IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04692530.html
   My bibliography  Save this paper

Performance Analysis of Multi-Tote Storage and Retrieval Autonomous Mobile Robot Systems

Author

Listed:
  • Zhizhen Qin

    (Tsinghua Shenzhen International Graduate School [Shenzhen] - THU - Tsinghua University [Beijing])

  • Peng Yang

    (Tsinghua Shenzhen International Graduate School [Shenzhen] - THU - Tsinghua University [Beijing])

  • Yeming Gong

    (EM - EMLyon Business School)

  • René de Koster

    (Erasmus University Rotterdam)

Abstract

Multi-tote storage and retrieval (MTSR) autonomous mobile robots can carry multiple product totes, store and retrieve them from different shelf rack tiers, and transport them to a workstation where the products are picked to fulfill customer orders. In each robot trip, totes retrieved during the previous trip must be stored. This leads to a mixed storage and retrieval route. We analyze this mixed storage and retrieval route problem and derive the optimal travel route for a multiblock warehouse by a layered graph algorithm, based on storage first-retrieval second and mixed storage and retrieval policies. We also propose an effective heuristic routing policy, the closest retrieval (CR) sequence policy, based on a local shortest path. Numerical results show that the CR policy leads to shorter travel times than the well-known S-shape policy, whereas the gap with the optimal mixed storage and retrieval policy in practical scenarios is small. Based on the CR policy, we model the stochastic behavior of the system using a semiopen queuing network (SOQN). This model can accurately estimate average tote throughput time and system throughput capacity as a function of the number of robots in the system. We use the SOQN and corresponding closed queuing network models to optimize the total annual cost as a function of the warehouse shape, the number of robots, and tote buffer positions on the robots for a given average tote throughput time and throughput capacity. Compared with robots that retrieve a single tote per trip, an MTSR system with at least five buffer positions can achieve lower operational costs while meeting given average tote throughput time and tote throughput capacity constraints.

Suggested Citation

  • Zhizhen Qin & Peng Yang & Yeming Gong & René de Koster, 2024. "Performance Analysis of Multi-Tote Storage and Retrieval Autonomous Mobile Robot Systems," Post-Print hal-04692530, HAL.
  • Handle: RePEc:hal:journl:hal-04692530
    DOI: 10.1287/trsc.2023.0397
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04692530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.