IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04566694.html
   My bibliography  Save this paper

Taming Large Events: Optimal Portfolio Theory for Strongly Fluctuating Assets

Author

Listed:
  • J. Bouchaud

    (CFM - Capital Fund Management - Capital Fund Management)

  • D. Sornette

    (IGPP - Institute of Geophysics and Planetary Physics [Los Angeles] - UCLA - University of California [Los Angeles] - UC - University of California, LPMC - Laboratoire de physique de la matière condensée - UNS - Université Nice Sophia Antipolis (1965 - 2019) - CNRS - Centre National de la Recherche Scientifique)

  • Christian Walter

    (LAP - Laboratoire d’anthropologie politique – Approches interdisciplinaires et critiques des mondes contemporains, UMR 8177 - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique)

  • J. Aguilar

Abstract

We propose a method of optimization of asset allocation in the case where the stock price variations are supposed to have "fat" tails represented by power laws. Generalizing over previous works using stable Lévy distributions, we distinguish three distinct components of risk described by three different parts of the distributions of price variations: unexpected gains (to be kept), harmless noise inherent to financial activity, and unpleasant losses, which is the only component one would like to minimize. The independent treatment of the tails of distributions for positive and negative variations and the generalization to large events of the notion of covariance of two random variables provide explicit formulae for the optimal portfolio. The use of the probability of loss (or equivalently the Value-at-Risk), as the key quantity to study and minimize, provides a simple solution to the problem of optimization of asset allocations in the general case where the characteristic exponents are different for each asset.

Suggested Citation

  • J. Bouchaud & D. Sornette & Christian Walter & J. Aguilar, 2011. "Taming Large Events: Optimal Portfolio Theory for Strongly Fluctuating Assets," Post-Print hal-04566694, HAL.
  • Handle: RePEc:hal:journl:hal-04566694
    DOI: 10.1142/S0219024998000035
    Note: View the original document on HAL open archive server: https://hal.science/hal-04566694
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04566694/document
    Download Restriction: no

    File URL: https://libkey.io/10.1142/S0219024998000035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:nys:sunysb:93-02 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Walter, 2020. "Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    2. Y. Malevergne & D. Sornette, 2001. "General framework for a portfolio theory with non-Gaussian risks and non-linear correlations," Papers cond-mat/0103020, arXiv.org.
    3. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    4. D. Sornette & P. Simonetti & J.V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Finance 9902004, University Library of Munich, Germany.
    5. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    6. J. V. Andersen & D. Sornette, 1999. "Have your cake and eat it too: increasing returns while lowering large risks!," Papers cond-mat/9907217, arXiv.org.
    7. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    8. Spencer Wheatley & Annette Hofmann & Didier Sornette, 2021. "Addressing insurance of data breach cyber risks in the catastrophe framework," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 53-78, January.
    9. Y. Malevergne & D. Sornette, 2002. "Multi-Moments Method for Portfolio Management: Generalized Capital Asset Pricing Model in Homogeneous and Heterogeneous markets," Papers cond-mat/0207475, arXiv.org.
    10. Mihail Turlakov, 2016. "Leverage and Uncertainty," Papers 1612.07194, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04566694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.