IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04419877.html
   My bibliography  Save this paper

Social acceptability and the majoritarian compromise rule

Author

Listed:
  • Mostapha Diss

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE], AIRESS - Africa Institute for Research in Economics and Social Sciences)

  • Clinton Gubong Gassi

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE])

  • Issofa Moyouwou

Abstract

We study the relationships between two well-known social choice concepts, namely the principle of social acceptability introduced by Mahajne and Volij (Soc Choice Welf 51(2):223–233, 2018), and the majoritarian compromise rule introduced by Sertel (Lectures notes in microeconomics, Bogazici University, 1986) and studied in detail by Sertel and Yılmaz (Soc Choice Welf 16(4):615–627, 1999). The two concepts have been introduced separately in the literature in the spirit of selecting an alternative that satisfies most individuals in single-winner elections. Our results in this paper show that the two concepts are so closely related that the interaction between them cannot be ignored. We show that the majoritarian compromise rule always selects a socially acceptable alternative when the number of alternatives is even and we provide a necessary and sufficient condition so that the majoritarian compromise rule always selects a socially acceptable alternative when the number of alternatives is odd. Moreover, we show that when we restrict ourselves to the three well-studied classes of single-peaked, single-caved, and single-crossing preferences, the majoritarian compromise rule always picks a socially acceptable alternative whatever the number of alternatives and the number of voters.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mostapha Diss & Clinton Gubong Gassi & Issofa Moyouwou, 2023. "Social acceptability and the majoritarian compromise rule," Post-Print hal-04419877, HAL.
  • Handle: RePEc:hal:journl:hal-04419877
    DOI: 10.1007/s00355-023-01464-4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aleksei Yu. Kondratev & Alexander S. Nesterov, 2018. "Measuring Majority Tyranny: Axiomatic Approach," HSE Working papers WP BRP 194/EC/2018, National Research University Higher School of Economics.
    2. Diss, Mostapha & Mahajne, Muhammad, 2020. "Social acceptability of Condorcet committees," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 14-27.
    3. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    4. Mostapha Diss & Ahmed Doghmi, 2016. "Multi-winner scoring election methods: Condorcet consistency and paradoxes," Public Choice, Springer, vol. 169(1), pages 97-116, October.
    5. Ayça Giritligil Kara & Murat Sertel, 2005. "Does majoritarian approval matter in selecting a social choice rule? An exploratory panel study," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 25(1), pages 43-73, October.
    6. Vincent Merlin & Ipek Özkal Sanver & M. Remzi Sanver, 2019. "Compromise Rules Revisited," Post-Print hal-02517201, HAL.
    7. Vincent Merlin & İpek Özkal Sanver & M. Remzi Sanver, 2019. "Compromise Rules Revisited," Group Decision and Negotiation, Springer, vol. 28(1), pages 63-78, February.
    8. Muhammad Mahajne & Oscar Volij, 2018. "The socially acceptable scoring rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 51(2), pages 223-233, August.
    9. William V. Gehrlein & Dominique Lepelley, 2017. "Elections, Voting Rules and Paradoxical Outcomes," Studies in Choice and Welfare, Springer, number 978-3-319-64659-6, June.
    10. Muhammad Mahajne & Oscar Volij, 2019. "Condorcet winners and social acceptability," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(4), pages 641-653, December.
    11. Gehrlein, William V., 1985. "The Condorcet criterion and committee selection," Mathematical Social Sciences, Elsevier, vol. 10(3), pages 199-209, December.
    12. Gehrlein, William V & Lepelley, Dominique, 2003. "On Some Limitations of the Median Voting Rule," Public Choice, Springer, vol. 117(1-2), pages 177-190, October.
    13. Klaus, Bettina & Peters, Hans & Storcken, Ton, 1997. "Strategy-proof division of a private good when preferences are single-dipped," Economics Letters, Elsevier, vol. 55(3), pages 339-346, September.
    14. Amartya Sen, 1969. "Quasi-Transitivity, Rational Choice and Collective Decisions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 381-393.
    15. J. A. Mirrlees, 1971. "An Exploration in the Theory of Optimum Income Taxation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(2), pages 175-208.
    16. Bilge Yilmaz & Murat R. Sertel, 1999. "The majoritarian compromise is majoritarian-optimal and subgame-perfect implementable," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(4), pages 615-627.
    17. William V. Gehrlein & Dominique Lepelley, 2011. "Voting Paradoxes and Group Coherence," Studies in Choice and Welfare, Springer, number 978-3-642-03107-6, June.
    18. Bonifacio Llamazares & Teresa Peña, 2015. "Positional Voting Systems Generated by Cumulative Standings Functions," Group Decision and Negotiation, Springer, vol. 24(5), pages 777-801, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diss, Mostapha & Mahajne, Muhammad, 2020. "Social acceptability of Condorcet committees," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 14-27.
    2. Eric Kamwa, 2023. "On two voting systems that combine approval and preferences: fallback voting and preference approval voting," Public Choice, Springer, vol. 196(1), pages 169-205, July.
    3. Eric Kamwa, 2023. "On Two Voting systems that combine approval and preferences: Fallback Voting and Preference Approval Voting," Working Papers hal-03614585, HAL.
    4. Fatma Aslan & Hayrullah Dindar & Jean Lainé, 2022. "When are committees of Condorcet winners Condorcet winning committees?," Review of Economic Design, Springer;Society for Economic Design, vol. 26(3), pages 417-446, September.
    5. Abdelhalim El Ouafdi & Dominique Lepelley & Hatem Smaoui, 2020. "Probabilities of electoral outcomes: from three-candidate to four-candidate elections," Theory and Decision, Springer, vol. 88(2), pages 205-229, March.
    6. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2019. "On some k-scoring rules for committee elections: agreement and Condorcet Principle," Working Papers hal-02147735, HAL.
    7. Ahmad Awde & Mostapha Diss & Eric Kamwa & Julien Yves Rolland & Abdelmonaim Tlidi, 2023. "Social Unacceptability for Simple Voting Procedures," Studies in Choice and Welfare, in: Sascha Kurz & Nicola Maaser & Alexander Mayer (ed.), Advances in Collective Decision Making, pages 25-42, Springer.
    8. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2020. "On Some k -scoring Rules for Committee Elections: Agreement and Condorcet Principle," Revue d'économie politique, Dalloz, vol. 130(5), pages 699-725.
    9. Ahmad Awde & Mostapha Diss & Eric Kamwa & Julien Yves Rolland & Abdelmonaim Tlidi, 2022. "Social unacceptability for simple voting procedures," Working Papers hal-03614587, HAL.
    10. Sylvain Béal & Marc Deschamps & Mostapha Diss & Issofa Moyouwou, 2022. "Inconsistent weighting in weighted voting games," Public Choice, Springer, vol. 191(1), pages 75-103, April.
    11. Mostapha Diss & Eric Kamwa & Abdelmonaim Tlidi, 2018. "The Chamberlin-Courant Rule and the k-Scoring Rules: Agreement and Condorcet Committee Consistency," Working Papers halshs-01817943, HAL.
    12. Daniela Bubboloni & Mostapha Diss & Michele Gori, 2020. "Extensions of the Simpson voting rule to the committee selection setting," Public Choice, Springer, vol. 183(1), pages 151-185, April.
    13. Mostapha Diss & Eric Kamwa, 2019. "Simulations in Models of Preference Aggregation," Working Papers hal-02424936, HAL.
    14. Mostapha Diss & Clinton Gubong Gassi & Issofa Moyouwou, 2023. "Combining diversity and excellence in multi winner elections," Working Papers 2023-05, CRESE.
    15. Mostapha Diss & Eric Kamwa & Issofa Moyouwou & Hatem Smaoui, 2021. "Condorcet Efficiency of General Weighted Scoring Rules Under IAC: Indifference and Abstention," Studies in Choice and Welfare, in: Mostapha Diss & Vincent Merlin (ed.), Evaluating Voting Systems with Probability Models, pages 55-73, Springer.
    16. Harrison-Trainor, Matthew, 2022. "An analysis of random elections with large numbers of voters," Mathematical Social Sciences, Elsevier, vol. 116(C), pages 68-84.
    17. Mostapha Diss & Eric Kamwa & Issofa Moyouwou & Hatem Smaoui, 2019. "Condorcet efficiency of general weighted scoring rules under IAC: indifference and abstention," Working Papers hal-02196387, HAL.
    18. Matías Núñez & M. Remzi Sanver, 2021. "On the subgame perfect implementability of voting rules," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(2), pages 421-441, February.
    19. Mostapha Diss & Michele Gori, 2022. "Majority properties of positional social preference correspondences," Theory and Decision, Springer, vol. 92(2), pages 319-347, March.
    20. Samaneh Zahedi & Amir Hedayati Aghmashhadi & Christine Fürst, 2021. "Optimal Politics of Conflict over Physical-Industrial Development Using a Technique of Cooperative Game Theory in Iran," Sustainability, MDPI, vol. 13(22), pages 1-20, November.

    More about this item

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04419877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.