IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04373380.html
   My bibliography  Save this paper

Volatility is (mostly) path-dependent

Author

Listed:
  • Julien Guyon

    (CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École des Ponts ParisTech, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École des Ponts ParisTech - Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique, Bloomberg L.P.)

  • Jordan Lekeufack

    (Department of Statistics [Berkeley] - UC Berkeley - University of California [Berkeley] - UC - University of California, Bloomberg L.P.)

Abstract

We learn from data that volatility is mostly path-dependent: up to 90% of the variance of the implied volatility of equity indexes is explained endogenously by past index returns, and up to 65% for (noisy estimates of) future daily realized volatility. The path-dependency that we uncover is remarkably simple: a linear combination of a weighted sum of past daily returns and the square root of a weighted sum of past daily squared returns with different time-shifted power-law weights capturing both short and long memory. This simple model, which is homogeneous in volatility, is shown to consistently outperform existing models across equity indexes and train/test sets for both implied and realized volatility. It suggests a simple continuous-time path-dependent volatility (PDV) model that may be fed historical or risk-neutral parameters. The weights can be approximated by superpositions of exponential kernels to produce Markovian models. In particular, we propose a 4-factor Markovian PDV model which captures all the important stylized facts of volatility, produces very realistic price and (rough-like) volatility paths, and jointly fits SPX and VIX smiles remarkably well. We thus show that a continuous-time Markovian parametric stochastic volatility (actually, PDV) model can practically solve the joint SPX/VIX smile calibration problem. This article is dedicated to the memory of Peter Carr whose works on volatility modeling have been so inspiring to us.

Suggested Citation

  • Julien Guyon & Jordan Lekeufack, 2023. "Volatility is (mostly) path-dependent," Post-Print hal-04373380, HAL.
  • Handle: RePEc:hal:journl:hal-04373380
    DOI: 10.1080/14697688.2023.2221281
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ofelia Bonesini & Antoine Jacquier & Aitor Muguruza, 2024. "Risk premium and rough volatility," Papers 2403.11897, arXiv.org.
    2. Guido Gazzani & Julien Guyon, 2024. "Pricing and calibration in the 4-factor path-dependent volatility model," Papers 2406.02319, arXiv.org.
    3. Christian Bayer & Luca Pelizzari & John Schoenmakers, 2023. "Primal and dual optimal stopping with signatures," Papers 2312.03444, arXiv.org.
    4. Herv'e Andr`es & Benjamin Jourdain, 2024. "Existence, uniqueness and positivity of solutions to the Guyon-Lekeufack path-dependent volatility model with general kernels," Papers 2408.02477, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04373380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.