IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04343870.html
   My bibliography  Save this paper

Warehouses without aisles : Layout design of a multi-deep rack climbing robotic system

Author

Listed:
  • Wanying Amanda Chen

    (ZJSU - Zhejiang Gongshang University [Hangzhou])

  • René de Koster

    (Erasmus University Rotterdam)

  • Yeming Gong

    (EM - EMLyon Business School)

Abstract

In the last decade, different multi-deep rack climbing robotic (MRR) systems have been introduced, particularly in e-commerce warehouses. These systems have great benefits, as aisles are no longer needed, allowing a high storage density on a small footprint. They only need vertical channels through which battery-powered robots can climb the racks, retrieve totes from any desired position, and bring them to a workstation. This paper studies two novel MRR system layouts: the cross and the compact layout. In addition, we compare performance with the more traditional aisle-based layout. The system performance, particularly operational cost and energy consumption, depends on these system layouts. The paper establishes queuing network models to investigate the trade-off between storage capacity and throughput of the system with these three layouts, taking robot blocking prevention into account. We compare the throughput, storage density, horizontal travel time, and energy consumption of the system. The results show that, in most cases, the compact layout outperforms other layouts on throughput. For energy consumption, the choice of layout depends on the footprint. We formulate a model to assist warehouse managers in choosing a layout of minimum annual operational cost, with a required storage and throughput capacity. We also compare the MRR system with an alternative robotic compact storage and retrieval system on operational cost and energy consumption. The MRR system appears to always have lower energy consumption and operational cost.

Suggested Citation

  • Wanying Amanda Chen & René de Koster & Yeming Gong, 2023. "Warehouses without aisles : Layout design of a multi-deep rack climbing robotic system," Post-Print hal-04343870, HAL.
  • Handle: RePEc:hal:journl:hal-04343870
    DOI: 10.1016/j.tre.2023.103281
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04343870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.