IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04339465.html
   My bibliography  Save this paper

Feature importance in the age of explainable AI : Case study of detecting fake news & misinformation via a multi-modal framework

Author

Listed:
  • Ajay Kumar

    (EM - EMLyon Business School)

  • James W. Taylor

    (Saïd Business School - University of Oxford)

Abstract

In recent years, fake news has become a global phenomenon due to its explosive growth and ability to leverage multimedia content to manipulate user opinions. Fake news is created by manipulating images, text, audio, and videos, particularly on social media, and the proliferation of such disinformation can trigger detrimental societal effects. False forwarded messages can have a devastating impact on society, spreading propaganda, inciting violence, manipulating public opinion, and even influencing elections. A major shortcoming of existing fake news detection methods is their inability to simultaneously learn and extract features from two modalities and train models with shared representations of multimodal (textual and visual) information. Feature engineering is a critical task in the fake news detection model's machine learning (ML) development process. For ML models to be explainable and trusted, feature engineering should describe how many features used in the ML models contribute to making more accurate predictions. Feature engineering, which plays an important role in the development of an explainable AI system by shaping the features used in the ML models, is an interconnected concept with explainable AI as it affects the model's interpretability. In the research, we develop a fake news detector model in which we (1) identify several textual and visual features that are associated with fake or credible news; specifically, we extract features from article titles, contents, and, top images; (2) investigate the role of all multimodal features (content, emotions and manipulation-based) and combine the cumulative effects using the feature engineering that represent the behavior of fake news propagators; and (3) develop a model to detect disinformation on benchmark multimodal datasets consisting of text and images. We conduct experiments on several real-world multimodal fake news datasets, and our results show that on average, our model outperforms existing single-modality methods by large margins that do not use any feature optimization techniques.

Suggested Citation

  • Ajay Kumar & James W. Taylor, 2024. "Feature importance in the age of explainable AI : Case study of detecting fake news & misinformation via a multi-modal framework," Post-Print hal-04339465, HAL.
  • Handle: RePEc:hal:journl:hal-04339465
    DOI: 10.1016/j.ejor.2023.10.003
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04339465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.