IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04339463.html
   My bibliography  Save this paper

Machine learning in marketing : Recent progress and future research directions

Author

Listed:
  • Dennis Herhausen
  • Stefan F. Bernritter
  • Eric W. T. Ngai
  • Ajay Kumar

    (EM - EMLyon Business School)

  • Dursun Delen

Abstract

Decision-making in marketing has changed dramatically in the past decade. Companies increasingly use algorithms to generate predictions for marketing decisions, such as which consumers to target with which offers. Such algorithmic decision-making promises to make marketing more intelligent, efficient, consumer-friendly, and, ultimately, more effective. Not surprisingly, machine learning is a trending topic for marketing researchers and practitioners. However, machine learning also introduces important challenges to the marketing landscape. We discuss this development by outlining recent progress and future research directions of machine learning in marketing. Specifically, we provide an overview of typical machine learning applications in marketing and present a guiding framework. We position the articles in the Journal of Business Research's Special Issue on "Machine Learning in Marketing" within this framework and conclude by putting forward a research agenda to further guide future research in this area.

Suggested Citation

  • Dennis Herhausen & Stefan F. Bernritter & Eric W. T. Ngai & Ajay Kumar & Dursun Delen, 2024. "Machine learning in marketing : Recent progress and future research directions," Post-Print hal-04339463, HAL.
  • Handle: RePEc:hal:journl:hal-04339463
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04339463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.