Author
Listed:
- Vincent Danos
(DI-ENS - Département d'informatique - ENS Paris - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique)
- Jean Krivine
(IRIF (UMR_8243) - Institut de Recherche en Informatique Fondamentale - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)
- Julien Prat
(CREST-THEMA - CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique - THEMA - Théorie économique, modélisation et applications - CNRS - Centre National de la Recherche Scientifique - CY - CY Cergy Paris Université)
Abstract
Real-time financial settlements constrain traders to have the cash on hand before they can enter a trade [Khapko and Zoican, 2017]. This prevents short-selling and ultimately impedes liquidity. We propose a novel trading protocol which relaxes the cash constraint, and manages chains of deferred payments. Traders can buy without paying first, and can re-sell while still withholding payments. Trades naturally arrange in chains which contract when deals are closed and extend when new ones open. Default risk is handled by reversing trades. In this short note we propose a class of novel financial instruments for zero-risk and zero-collateral intermediation. The central idea is that bilateral trades can be chained into trade lines. The ownership of an underlying asset becomes distributed among traders with positions in the trade line. The trading protocol determines who ends up owning that asset and the overall payoffs of the participants. Counterparty risk is avoided because the asset itself serves as a collateral for the entire chain of trades. The protocol can be readily implemented as a smart contract on a blockchain. Additional examples, proofs, protocol variants, and game-theoretic properties related to the order-sensitivity of the games defined by trade lines can be found in the extended version of this note [Danos et al., 2019]. Therein, one can also find the definition and game-theoretic analysis of standard trade-lines with applications to trust-less zero-collateral intermediation.
Suggested Citation
Vincent Danos & Jean Krivine & Julien Prat, 2021.
"Revisiting the Liquidity/Risk Trade-Off with Smart Contracts (Short Paper),"
Post-Print
hal-04336736, HAL.
Handle:
RePEc:hal:journl:hal-04336736
DOI: 10.4230/OASIcs.Tokenomics.2020.10
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04336736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.