IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04299225.html
   My bibliography  Save this paper

Forecasting crude oil volatility with exogenous predictors: As good as it GETS?

Author

Listed:
  • Jean-Baptiste Bonnier

    (CRESE - Centre de REcherches sur les Stratégies Economiques (UR 3190) - UFC - Université de Franche-Comté - UBFC - Université Bourgogne Franche-Comté [COMUE], LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - Nantes Univ - IAE Nantes - Nantes Université - Institut d'Administration des Entreprises - Nantes - Nantes Université - pôle Sociétés - Nantes Univ - Nantes Université)

Abstract

This paper aims to investigate the usefulness of exogenous predictors to forecast crude oil volatility. We use the recent expansion of the general-to-specific (GETS) procedure to conditionally heteroskedastic models to estimate a parsimonious predictive model of crude oil volatility from a large set of predictors. Our results show that the GETS algorithm achieves good predictive accuracy compared to its competitors at the 1-day horizon. However, this accuracy deteriorates for more distant forecast horizons. We argue that it may be due to the fact that the GETS procedure is based on tests that are key in assessing explanatory power as opposed to reducing expected prediction error. Among its competitors, DMA achieves good predictive power in almost all situations. Still, our analysis provides interesting insights on the variables best suited to forecast crude oil volatility. In particular, forecasters might benefit from better exploiting the predictive content of exchange rates.

Suggested Citation

  • Jean-Baptiste Bonnier, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Post-Print hal-04299225, HAL.
  • Handle: RePEc:hal:journl:hal-04299225
    DOI: 10.1016/j.eneco.2022.106059
    Note: View the original document on HAL open archive server: https://hal.science/hal-04299225
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04299225/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.eneco.2022.106059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04299225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.