IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04136284.html
   My bibliography  Save this paper

Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways

Author

Listed:
  • Léon Sobrie

    (UGENT - Universiteit Gent = Ghent University = Université de Gand)

  • Marijn Verschelde

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

  • Veerle Hennebel

    (Department of Economics [Leuven] - KU Leuven - Catholic University of Leuven = Katholieke Universiteit Leuven)

  • Bart Roets

    (Infrabel, Brussels)

Abstract

Predictive analytics is an increasingly popular tool for enhancing decision-making processes but is in many business settings based on rule-based models. These rule-based models reach their limits in complex settings. This study compares the performance of a rule-based system with a customised LSTM encoder-decoder deep learning model for predicting train delays. For this, we use a purposefully built real-world dataset on railway transportation, where trains' interdependence over the network makes delay prediction more difficult. Results show that the deep learning model, which incorporates rich spatiotemporal interdependency information in real-time, outperforms the rule-based system by 18%, with the difference increasing to above 23% with higher complexity. The study also dissects the performance difference across different settings: dense versus rural areas, peak versus off-peak hours, low versus high delay, and before versus during the COVID-19 pandemic. The deep learning model is implemented as a proof of concept for decision support within Belgium's railway infrastructure company Infrabel.

Suggested Citation

  • Léon Sobrie & Marijn Verschelde & Veerle Hennebel & Bart Roets, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," Post-Print hal-04136284, HAL.
  • Handle: RePEc:hal:journl:hal-04136284
    DOI: 10.1016/j.ejor.2023.03.040
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04136284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.