IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04096106.html
   My bibliography  Save this paper

Big data analytics capability and contribution to firm performance: the mediating effect of organizational learning on firm performance

Author

Listed:
  • Mahda Garmaki

    (Coventry University)

  • Rebwar Kamal Gharib

    (Coventry University)

  • Imed Boughzala

    (LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - TIM - Département Technologies, Information & Management - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

Abstract

Purpose > The study examines how firms may transform big data analytics (BDA) into a sustainable competitive advantage and enhance business performance using BDA. Furthermore, this study identifies various resources and sub-capabilities that contribute to BDA capability. Design/methodology/approach > Using classic grounded theory (GT), resource-based theory and dynamic capability (DC), the authors conducted interviews, which involved an exploratory inductive process. Through a continuous iterative process between the collection, analysis and comparison of data, themes and their relationships appeared. The literature was used as part of the data set in the later phases of data collection and analysis to identify how the study's findings fit with the extant literature and enrich the emerging concepts and their relationships. Findings > The data analysis led to developing a conceptual model of BDA capability that described how BDA contributes to firm performance through the mediated impact of organizational learning (OL). The findings indicate that BDA capability is incomplete in the absence of BDA capability dimensions and their sub-dimensions, and expected advancement will not be achieved. Research limitations/implications > The research offers insights on how BDA is converted into an enterprise-wide initiative, by extending the BDA capability model and describing the role of per dimension in constructing the capability. In addition, the paper provides managers with insights regarding the ways in which BDA capability continuously contributes to OL, fosters organizational knowledge and organizational abilities to sense, seize and reconfigure data and knowledge to grab digital opportunities in order to sustain competitive advantage. Originality/value > This article is the first exploratory research using GT to identify how data-driven firms obtain and sustain BDA competitive advantage, beyond prior studies that employed mostly a hypothetico-deductive stance to investigate BDA capability. While the authors discovered various dimensions of BDA capability and identified several factors, some of the prior related studies showed some of the dimensions as formative factors (e.g. Lozada et al ., 2019; Mikalef et al ., 2019) and some other research depicted the different dimensions of BDA capability as reflective factors (e.g. Wamba and Akter, 2019; Ferraris et al. , 2019). Thus, it was found necessary to correctly define different dimensions and their contributions, since formative and reflective models represent various approaches to achieving the capability. In this line, the authors used GT, as an exploratory method, to conceptualize BDA capability and the mechanism that it contributes to firm performance. This research introduces new capability dimensions that were not examined in prior research. The study also discusses how OL mediates the impact of BDA capability on firm performance, which is considered the hidden value of BDA capability.

Suggested Citation

  • Mahda Garmaki & Rebwar Kamal Gharib & Imed Boughzala, 2023. "Big data analytics capability and contribution to firm performance: the mediating effect of organizational learning on firm performance," Post-Print hal-04096106, HAL.
  • Handle: RePEc:hal:journl:hal-04096106
    DOI: 10.1108/JEIM-06-2021-0247
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Al-Omoush, Khaled Saleh & Garcia-Monleon, Fernando & Mas Iglesias, José Manuel, 2024. "Exploring the interaction between big data analytics, frugal innovation, and competitive agility: The mediating role of organizational learning," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    2. Constant Berkhout & Abhi Bhattacharya & Carlos Bauer & Ross W. Johnson, 2024. "Revisiting the construct of data-driven decision making: antecedents, scope, and boundaries," SN Business & Economics, Springer, vol. 4(10), pages 1-23, October.
    3. Tan, Fuqiang & Zhang, Qingyu & Mehrotra, Ankit & Attri, Rekha & Tiwari, Himanshi, 2024. "Unlocking venture growth: Synergizing big data analytics, artificial intelligence, new product development practices, and inter-organizational digital capability," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    4. Zhu, Xiumei & Li, Yue, 2023. "The use of data-driven insight in ambidextrous digital transformation: How do resource orchestration, organizational strategic decision-making, and organizational agility matter?," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    5. Luqman, Adeel & Wang, Liangyu & Katiyar, Gagan & Agarwal, Reeti & Mohapatra, Amiya Kumar, 2024. "Unpacking associations between positive-negative valence and ambidexterity of big data. Implications for firm performance," Technological Forecasting and Social Change, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04096106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.