Author
Listed:
- Areski Cousin
(IRMA - Institut de Recherche Mathématique Avancée - UNISTRA - Université de Strasbourg - CNRS - Centre National de la Recherche Scientifique)
- Jérôme Lelong
(DAO - Données, Apprentissage et Optimisation - LJK - Laboratoire Jean Kuntzmann - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, LJK - Laboratoire Jean Kuntzmann - UPMF - Université Pierre Mendès France - Grenoble 2 - UJF - Université Joseph Fourier - Grenoble 1 - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - CNRS - Centre National de la Recherche Scientifique)
- Tom Picard
(DAO - Données, Apprentissage et Optimisation - LJK - Laboratoire Jean Kuntzmann - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes)
Abstract
This paper studies the multi-period mean-variance portfolio allocation problem with transaction costs. Many methods have been proposed these last years to challenge the famous uni-period Markowitz strategy. But these methods cannot integrate transaction costs or become computationally heavy and hardly applicable. In this paper, we try to tackle this allocation problem by proposing an innovative approach which relies on representing the set of admissible portfolios by a finite dimensional Wiener chaos expansion. This numerical method is able to find an optimal strategy for the allocation problem subject to transaction costs. To complete the study, the link between optimal portfolios submitted to transaction costs and the underlying risk aversion is investigated. Then a competitive and compliant benchmark based on the sequential uni-period Markowitz strategy is built to highlight the efficiency of our approach.
Suggested Citation
Areski Cousin & Jérôme Lelong & Tom Picard, 2024.
"Mean-variance dynamic portfolio allocation with transaction costs: a Wiener chaos expansion approach,"
Post-Print
hal-04086378, HAL.
Handle:
RePEc:hal:journl:hal-04086378
DOI: 10.1080/1350486X.2024.2357200
Note: View the original document on HAL open archive server: https://hal.univ-grenoble-alpes.fr/hal-04086378v2
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04086378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.