IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04038657.html
   My bibliography  Save this paper

Numerical Considerations and a New Implementation for Invariant Coordinate Selection

Author

Listed:
  • Aurore Archimbaud

    (Erasmus University Rotterdam)

  • Zlatko Drmac

    (University of Zagreb)

  • Klaus Nordhausen

    (JYU - University of Jyväskylä)

  • Una Radojicic

    (TU Wien - Vienna University of Technology = Technische Universität Wien)

  • Anne Ruiz-Gazen

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Invariant coordinate selection (ICS) is a multivariate data transformation and a dimension reduction method that can be useful in many different contexts. It can be used for outlier detection or cluster identification, and can be seen as an independent component or a non-Gaussian component analysis method. The usual implementation of ICS is based on a joint diagonalization of two scatter matrices, and may be numerically unstable in some ill-conditioned situations. We focus on one-step M-scatter matrices and propose a new implementation of ICS based on a pivoted QR factorization of the centered data set. This factorization avoids the direct computation of the scatter matrices and their inverse and brings numerical stability to the algorithm. Furthermore, the row and column pivoting leads to a rank revealing procedure that allows computation of ICS when the scatter matrices are not full rank. Several artificial and real data sets illustrate the interest of using the new implementation compared to the original one.

Suggested Citation

  • Aurore Archimbaud & Zlatko Drmac & Klaus Nordhausen & Una Radojicic & Anne Ruiz-Gazen, 2023. "Numerical Considerations and a New Implementation for Invariant Coordinate Selection," Post-Print hal-04038657, HAL.
  • Handle: RePEc:hal:journl:hal-04038657
    DOI: 10.1137/22M1498759
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas-Agnan, Christine & Mondon, Camille & Trinh, Thi-Huong & Ruiz-Gazen, Anne, 2024. "ICS for complex data with application to outlier detection for density data objects," TSE Working Papers 24_1585, Toulouse School of Economics (TSE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04038657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.