IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04020165.html
   My bibliography  Save this paper

A Novel Machine Learning Approach for Predicting the NIFTY50 Index in India

Author

Listed:
  • Pavan Kumar Nagula

    (ESC Rennes School of Business - ESC [Rennes] - ESC Rennes School of Business)

  • Christos Alexakis

    (ESC Rennes School of Business - ESC [Rennes] - ESC Rennes School of Business)

Abstract

Over the past decade, extensive research on stock market prediction using machine learning models has been conducted. In this framework, different approaches for data standardisation methods have been used for financial time series analysis and to assess the impact of data standardisation on the final prediction outcome. The paper uses the feature-level optimal rolling-window batch data standardisation method to improve the machine learning model's predictive power significantly. Along with the standardisation method, the paper explores the performance of the automated feature interactions learner (Deep Cross Networks) effect on a plethora of technical indicators aiming at predicting the movements of the NIFTY50 index in India, as these predicted changes are reflected in options contracts.

Suggested Citation

  • Pavan Kumar Nagula & Christos Alexakis, 2022. "A Novel Machine Learning Approach for Predicting the NIFTY50 Index in India," Post-Print hal-04020165, HAL.
  • Handle: RePEc:hal:journl:hal-04020165
    DOI: 10.1007/s11294-022-09861-8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nagula, Pavan Kumar & Alexakis, Christos, 2022. "A new hybrid machine learning model for predicting the bitcoin (BTC-USD) price," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04020165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.