IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03982860.html
   My bibliography  Save this paper

Customer Lifetime Value Modeling with Applications in Python and R: Lessons and Experiences from Industry and Research on how to Become a Customer-Centric

Author

Listed:
  • Bart Baesens
  • Arno de Caigny

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

Firms and organisations cannot exist without customers. They essentially constitute the key ingredient to make a firm profitable and add shareholder and societal value. Despite recent technological advances in both data storage as well as processing and analysis, many small to large-scale firms are still struggling to quantify customer value, optimise customer relationships, facilitate customer experiences and identify customer journeys. Due to a nearly continuously expanding product portfolio, with new products and services being developed and marketed on an on-going basis, along a diversity of existing as well as innovative channels, modeling customer lifetime value is a far from simple exercise with many challenges and difficulties arising. More specifically, throughout our dealings with firms, we often found that simple questions such as "Who is actually your customer?", "Who are your most valuable customers?", "What is the best way to acquire new customers"?, "Why do your customers leave you?", "What product/service should be offered to what customer?", "How can you sell more to your customers?", "How do you measure customer value?", often provoked intense (if not fierce) discussions with answers not always readily available and uniformly agreed upon by business practitioners across different departments. This book tries to answer exactly these questions using data-driven and analytical techniques and insights. More specifically, we try to provide a clear and to-the-point guide of how to define, quantify, model and deploy Customer Lifetime Value (CLV) models from various perspectives by first identifying and defining the key problems and then offering ways to tackle them using carefully selected data combined with state of the art analytics.

Suggested Citation

  • Bart Baesens & Arno de Caigny, 2022. "Customer Lifetime Value Modeling with Applications in Python and R: Lessons and Experiences from Industry and Research on how to Become a Customer-Centric," Post-Print hal-03982860, HAL.
  • Handle: RePEc:hal:journl:hal-03982860
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03982860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.