IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03948466.html
   My bibliography  Save this paper

Estimating a model of herding behavior on social networks

Author

Listed:
  • Maxime L.D. Nicolas

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

In this paper, we estimate an agent-based model (ABM) to investigate herding behaviors in the formation of investor sentiment. We formalize a simple opinion dynamics model in a social network framework and rely on a numerical method to estimate its parameters. We derive a sentiment proxy from the weekly aggregation of online messages concerning 15 US stocks and 5 cryptocurrencies. Our empirical results suggest a strong impact of herding behavior on the formation of sentiment toward highly volatile assets. For such assets, we simultaneously find limited impacts of financial returns and investor attention on the opinion formation process, suggesting that investor sentiment is explained by social interactions. On the other hand, we find a limited influence of social interactions on sentiment regarding less volatile assets, whose formation process is instead explained by the strong influence of financial returns and investor attention. In particular, we find that herding behavior was significantly higher and played a major role in the sentiment formation process regarding cryptocurrencies when the bubble occurred.

Suggested Citation

  • Maxime L.D. Nicolas, 2022. "Estimating a model of herding behavior on social networks," Post-Print hal-03948466, HAL.
  • Handle: RePEc:hal:journl:hal-03948466
    DOI: 10.1016/j.physa.2022.127884
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03948466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.