Author
Listed:
- Natkamon Tovanich
(CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique, X - École polytechnique - IP Paris - Institut Polytechnique de Paris)
- Rémy Cazabet
(DM2L - Data Mining and Machine Learning - LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique, LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique, UCBL - Université Claude Bernard Lyon 1 - Université de Lyon, IXXI - Institut Rhône-Alpin des systèmes complexes - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes)
Abstract
Bitcoin is a cryptocurrency that stores transaction records in a public distributed ledger called the blockchain. All transactions that occurred since the beginning of Bitcoin in 2009 can therefore be consulted by anyone. This unique dataset allows us to study financial transaction networks among pseudonymous participants. Several works analyzed static transaction networks but did not consider the flow of money over the time. In this work, we focus on the analysis of flows, a challenging task given the scale of the data (hundreds of millions of transactions). We propose a method based on taint analysis to track Bitcoin money flow from initial starting points to the dissolution of the taint. The algorithm derives the dynamics subgraphs passing through known entities in the transaction network. We study the pattern of money flowing from different starting points: we taint coins minted by different mining pools in one day period between 2013 and 2016, and use graph embeddings from three representations of the data: (1) static network, (2) dynamic network, and (3) money flow pattern tree. Both qualitative and quantitative analysis show that mining pools have different diffusion patterns and that those patterns evolve over time. Based on this initial result, we are developing a method to select critical entities and expand our unsupervised approach to characterize other money flow patterns, in particular, related to illegal and cybercrime activities.
Suggested Citation
Natkamon Tovanich & Rémy Cazabet, 2022.
"Pattern Analysis of Money Flows in the Bitcoin Blockchain,"
Post-Print
hal-03898095, HAL.
Handle:
RePEc:hal:journl:hal-03898095
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
search for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03898095. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.