IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03893060.html
   My bibliography  Save this paper

SISTA : Learning Optimal Transport Costs under Sparsity Constraints

Author

Listed:
  • Guillaume Carlier

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique, Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres, MOKAPLAN - Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales - CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique - Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique)

  • Arnaud Dupuy

    (uni.lu - Université du Luxembourg = University of Luxembourg = Universität Luxemburg)

  • Alfred Galichon

    (CIMS - Courant Institute of Mathematical Sciences [New York] - NYU - New York University [New York] - NYU - NYU System, ECON - Département d'économie (Sciences Po) - Sciences Po - Sciences Po - CNRS - Centre National de la Recherche Scientifique)

  • Yifei Sun

    (CIMS - Courant Institute of Mathematical Sciences [New York] - NYU - New York University [New York] - NYU - NYU System)

Abstract

In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent ("S"-inkhorn) and proximal gradient descent ("ISTA"). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences. © 2022 Wiley Periodicals LLC.

Suggested Citation

  • Guillaume Carlier & Arnaud Dupuy & Alfred Galichon & Yifei Sun, 2022. "SISTA : Learning Optimal Transport Costs under Sparsity Constraints," Post-Print hal-03893060, HAL.
  • Handle: RePEc:hal:journl:hal-03893060
    DOI: 10.1002/cpa.22047
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03893060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.