IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03886338.html
   My bibliography  Save this paper

Bankruptcy prediction using fuzzy convolutional neural networks

Author

Listed:
  • Sami Ben Jabeur

    (ESDES - ESDES, Lyon Business School - UCLy - UCLy - UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598) - UCLy - UCLy (Lyon Catholic University))

  • Vanessa Serret

    (CEREFIGE - Centre Européen de Recherche en Economie Financière et Gestion des Entreprises - UL - Université de Lorraine)

Abstract

We propose a combined method for bankruptcy prediction based on fuzzy set qualitative comparative analysis (fsQCA) and convolutional neural networks (CNN). Currently, CNNs are being applied to various fields, and in some areas are providing higher performance than traditional models. In our proposed method, a CNN uses calibrated variables from fuzzy sets to improve performance accuracy. In addition, there are no published studies on the effect of feature selection at the input level of convolutional neural networks. Therefore, this study compares four well-known feature selection methods used in financial distress prediction, (t-test, stepdisc discriminant analysis, stepwise logistic regression and partial least square discriminant analysis) to investigate their effect on classification performance. The results show that fuzzy convolutional neural networks (FCNN) lead to better performance than when using traditional methods.

Suggested Citation

  • Sami Ben Jabeur & Vanessa Serret, 2022. "Bankruptcy prediction using fuzzy convolutional neural networks," Post-Print hal-03886338, HAL.
  • Handle: RePEc:hal:journl:hal-03886338
    DOI: 10.1016/j.ribaf.2022.101844
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03886338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.