IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03880381.html
   My bibliography  Save this paper

Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder

Author

Listed:
  • Pierre Brugière

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Gabriel Turinici

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

Abstract

We present in this paper a method to compute, using generative neural networks, an estimator of the "Value at Risk" for a nancial asset. The method uses a Variational Auto Encoder with a 'energy' (a.k.a. Radon- Sobolev) kernel. The result behaves according to intuition and is in line with more classical methods.

Suggested Citation

  • Pierre Brugière & Gabriel Turinici, 2023. "Deep learning of Value at Risk through generative neural network models : the case of the Variational Auto Encoder," Post-Print hal-03880381, HAL.
  • Handle: RePEc:hal:journl:hal-03880381
    DOI: 10.1016/j.mex.2023.102192
    Note: View the original document on HAL open archive server: https://hal.science/hal-03880381
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03880381/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.mex.2023.102192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Caprioli & Emanuele Cagliero & Riccardo Crupi, 2023. "Quantifying Credit Portfolio sensitivity to asset correlations with interpretable generative neural networks," Papers 2309.08652, arXiv.org, revised Nov 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03880381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.