IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03585448.html
   My bibliography  Save this paper

Drivers and social implications of Artificial Intelligence adoption in healthcare during the COVID-19 pandemic

Author

Listed:
  • Darius-Aurel Frank

    (Aarhus University [Aarhus])

  • Christian T. Elbaek

    (Aarhus University [Aarhus])

  • Caroline Kjaer Borsting

    (Aarhus University [Aarhus])

  • Panagiotis Mitkidis

    (Duke University [Durham])

  • Tobias Otterbring

    (UIA - University of Agder)

  • Sylvie Borau

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

The COVID-19 pandemic continues to impact people worldwide–steadily depleting scarce resources in healthcare. Medical Artificial Intelligence (AI) promises a much-needed relief but only if the technology gets adopted at scale. The present research investigates people's intention to adopt medical AI as well as the drivers of this adoption in a representative study of two European countries (Denmark and France, N = 1068) during the initial phase of the COVID-19 pandemic. Results reveal AI aversion; only 1 of 10 individuals choose medical AI over human physicians in a hypothetical triage-phase of COVID-19 pre-hospital entrance. Key predictors of medical AI adoption are people's trust in medical AI and, to a lesser extent, the trait of open-mindedness. More importantly, our results reveal that mistrust and perceived uniqueness neglect from human physicians, as well as a lack of social belonging significantly increase people's medical AI adoption. These results suggest that for medical AI to be widely adopted, people may need to express less confidence in human physicians and to even feel disconnected from humanity. We discuss the social implications of these findings and propose that successful medical AI adoption policy should focus on trust building measures–without eroding trust in human physicians.

Suggested Citation

  • Darius-Aurel Frank & Christian T. Elbaek & Caroline Kjaer Borsting & Panagiotis Mitkidis & Tobias Otterbring & Sylvie Borau, 2021. "Drivers and social implications of Artificial Intelligence adoption in healthcare during the COVID-19 pandemic," Post-Print hal-03585448, HAL.
  • Handle: RePEc:hal:journl:hal-03585448
    DOI: 10.1371/journal.pone.0259928
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank, Darius-Aurel & Otterbring, Tobias, 2023. "Being seen… by human or machine? Acknowledgment effects on customer responses differ between human and robotic service workers," Technological Forecasting and Social Change, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03585448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.