IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03477870.html
   My bibliography  Save this paper

Safety and Risk Analysis of Autonomous Vehicles Using Computer Vision and Neural Networks

Author

Listed:
  • Aditya Dixit

    (VIT - Vellore Institute of Technology)

  • Ramesh Kumar Chidambaram

    (VIT - Vellore Institute of Technology)

  • Zaheer Allam

    (IAE Paris - Sorbonne Business School)

Abstract

The autonomous vehicle (AVs) market is expanding at a rapid pace due to the advancement of information, communication, and sensor technology applications, offering a broad range of opportunities in terms of energy efficiency and addressing climate change concerns and safety. With regard to this last point, the rate of reduction in accidents is considerable when switching safety control tasks to machines from humans, which can be noted as having significantly slower response rates. This paper explores this thematic by focusing on the safety of AVs by thorough analysis of previously collected AV crash statistics and further discusses possible solutions for achieving increased autonomous vehicle safety. To achieve this, this technical paper develops a dynamic run-time safe assessment system, using the standard autonomous drive system (ADS), which is developed and simulated in case studies further in the paper. OpenCV methods for lane detection are developed and applied as robust control frameworks, which introduces the factor of vehicle crash predictability for the ego vehicle. The developed system is made to predict possible crashes by using a combination of machine learning and neural network methods, providing useful information for response mechanisms in risk scenarios. In addition, this paper explores the operational design domain (ODD) of the AV's system and provides possible solutions to extend the domain in order to render vehicle operationality, even in safe mode. Additionally, three case studies are explored to supplement a discussion on the implementation of algorithms aimed at increasing curved lane detection ability and introducing trajectory predictability of neighbouring vehicles for an ego vehicle, resulting in lower collisions and increasing the safety of the AV overall. This paper thus explores the technical development of autonomous vehicles and is aimed at researchers and practitioners engaging in the conceptualisation, design, and implementation of safer AV systems focusing on lane detection and expanding AV safe state domains and vehicle trajectory predictability.

Suggested Citation

  • Aditya Dixit & Ramesh Kumar Chidambaram & Zaheer Allam, 2021. "Safety and Risk Analysis of Autonomous Vehicles Using Computer Vision and Neural Networks," Post-Print hal-03477870, HAL.
  • Handle: RePEc:hal:journl:hal-03477870
    DOI: 10.3390/vehicles3030036
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaheer Allam & Ayyoob Sharifi & Simon Elias Bibri & Didier Chabaud, 2022. "Emerging Trends and Knowledge Structures of Smart Urban Governance," Sustainability, MDPI, vol. 14(9), pages 1-29, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03477870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.