IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03193664.html
   My bibliography  Save this paper

Optimal open loop cheating in dynamic reversed Linear Quadratic Stackelberg games

Author

Listed:
  • Thomas Vallée

    (LEN - Laboratoire d'économie de Nantes - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

  • Ch. Deissenberg

    (CEFI - Centre d'économie et de finances internationales - Université de la Méditerranée - Aix-Marseille 2 - CNRS - Centre National de la Recherche Scientifique)

  • T. Basar

    (UIUC - University of Illinois at Urbana-Champaign [Urbana] - University of Illinois System)

Abstract

The distinctive characteristic of a "Reversed Stackelberg Game" is that the leader plays twice, first by announcing his future action, second by implementing a possibly different action given the follower's reaction to his announcement. In such a game, if the leader uses the normal Stackelberg solution to find (and announce) his optimal strategy, there is a strong temptation for him to cheat, that is, to implement another action than the one announced. In this paper, within the framework of a standard discrete time Linear–Quadratic Dynamic Reversed Stackelberg game, we discuss and derive the best possible open-loop cheating strategy for an unscrupulous leader.

Suggested Citation

  • Thomas Vallée & Ch. Deissenberg & T. Basar, 1999. "Optimal open loop cheating in dynamic reversed Linear Quadratic Stackelberg games," Post-Print hal-03193664, HAL.
  • Handle: RePEc:hal:journl:hal-03193664
    DOI: 10.1023/A:1018982313949
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deissenberg, Christophe & Gonzalez, Francisco Alvarez, 2002. "Cheating for the common good in a macroeconomic policy game," Journal of Economic Dynamics and Control, Elsevier, vol. 26(9-10), pages 1457-1479, August.
    2. Dawid, Herbert & Deissenberg, Christophe, 2005. "On the efficiency-effects of private (dis-)trust in the government," Journal of Economic Behavior & Organization, Elsevier, vol. 57(4), pages 530-550, August.
    3. Thomas Vallée, 2018. "Comparison of different Stackelberg solutions in a deterministic dynamic pollution control: the time inconsistency problem revisited," Working Papers halshs-01843717, HAL.
    4. Kendrick, David A., 2005. "Stochastic control for economic models: past, present and the paths ahead," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 3-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03193664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.