IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03028871.html
   My bibliography  Save this paper

How to Choose Community Detection Methods in Complex Networks

Author

Listed:
  • Cécile Bothorel

    (IMT Atlantique - LUSSI - Département Logique des Usages, Sciences sociales et Sciences de l'Information - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], Lab-STICC_DECIDE - Equipe DECIDE - Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance - ENIB - École Nationale d'Ingénieurs de Brest - UBS - Université de Bretagne Sud - UBO - Université de Brest - ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique - UBL - Université Bretagne Loire - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris])

  • Laurent Brisson

    (IMT Atlantique - LUSSI - Département Logique des Usages, Sciences sociales et Sciences de l'Information - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], Lab-STICC_DECIDE - Equipe DECIDE - Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance - ENIB - École Nationale d'Ingénieurs de Brest - UBS - Université de Bretagne Sud - UBO - Université de Brest - ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique - UBL - Université Bretagne Loire - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris])

  • Inna Lyubareva

    (IMT Atlantique - LUSSI - Département Logique des Usages, Sciences sociales et Sciences de l'Information - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris], LEGO - Laboratoire d'Economie et de Gestion de l'Ouest - UBS - Université de Bretagne Sud - UBO - Université de Brest - IMT - Institut Mines-Télécom [Paris] - IBSHS - Institut Brestois des Sciences de l'Homme et de la Société - UBO - Université de Brest - UBL - Université Bretagne Loire - IMT Atlantique - IMT Atlantique - IMT - Institut Mines-Télécom [Paris])

Abstract

Discovering community structure in complex networks is a mature field since a tremendous number of community detection methods have been introduced in the literature. Nevertheless, it is still very challenging for practitioners to choose in each particular case the most suitable algorithm which would provide the richest insights into the structure of the social network they study. Through a case study of the French crowdfunding platform, Ulule, this paper demonstrates an original methodology for the selection of a relevant algorithm. For this purpose we, firstly, compare the partitions of 11 well-known algorithms. Then, bivariate map based on hub dominance and transitivity is used to identify the partitions which unveil communities with the most interesting size and internal topologies. These steps result in three community detection methods relevant for our data. Finally, we add the socioeconomic indicators, meaningful in the framework of the crowdfunding platform, in order to select the most significant algorithm of community detection, and to analyze the cooperation patterns among the platform's users and their impact on success of fundraising campaigns. In line with previous socioeconomic studies, we demonstrate that the social concept of homophily in online groups really matters. In addition, our approach puts in light that crowdfunding groups may benefit from diversity.

Suggested Citation

  • Cécile Bothorel & Laurent Brisson & Inna Lyubareva, 2021. "How to Choose Community Detection Methods in Complex Networks," Post-Print hal-03028871, HAL.
  • Handle: RePEc:hal:journl:hal-03028871
    Note: View the original document on HAL open archive server: https://hal.science/hal-03028871v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03028871v1/document
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frimpong, Bright & Mohammed, Fatima & Larson, Keri M. & Anderson Junior, Henry, 2024. "Take my word for it! The role of projected certainty signaling and certainty alignment in reward crowdfunding outcomes," Journal of Business Venturing Insights, Elsevier, vol. 21(C).

    More about this item

    Keywords

    Social Networks Analysis; Community Detection; Choice of method; Complex Networks; Online cooperation; Crowdfunding;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03028871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.