IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03012578.html
   My bibliography  Save this paper

Production planning under demand uncertainty: a budgeted uncertainty approach

Author

Listed:
  • Romain Guillaume

    (IRIT-ADRIA - Argumentation, Décision, Raisonnement, Incertitude et Apprentissage - IRIT - Institut de recherche en informatique de Toulouse - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse - TMBI - Toulouse Mind & Brain Institut - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse, UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse)

  • Adam Kasperski

    (Wroclaw University of Science and Technology)

  • Pawel Zielinski

    (Wroclaw University of Science and Technology)

Abstract

The paper deals with a version of the capacitated single-item lot sizing problem with backordering under uncertainty. The interval representation of uncertain cumulative demands is considered. Two its variants: the discrete budgeted uncertainty and the continuous budgeted uncertainty, are examined. In order to choose a robust production plan, for the problem under consideration, that hedges against the uncertainty the well-known minmax criterion is adopted. Polynomial and pseudopolynomial methods for finding a robust production plan, respectively, under the discrete and continuous budgeted uncertainty are proposed.

Suggested Citation

  • Romain Guillaume & Adam Kasperski & Pawel Zielinski, 2019. "Production planning under demand uncertainty: a budgeted uncertainty approach," Post-Print hal-03012578, HAL.
  • Handle: RePEc:hal:journl:hal-03012578
    DOI: 10.1007/978-3-030-48439-2_52
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03012578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.