IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02938876.html
   My bibliography  Save this paper

Bivariate adaptive fuzzy-GARCH model applied to forecasting the dynamic conditional correlation of financial stocks using particle swarm optimization

Author

Listed:
  • Alfred Mbairadjim Moussa

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Jules Sadefo-Kamdem

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Michel Terraza

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

No abstract is available for this item.

Suggested Citation

  • Alfred Mbairadjim Moussa & Jules Sadefo-Kamdem & Michel Terraza, 2012. "Bivariate adaptive fuzzy-GARCH model applied to forecasting the dynamic conditional correlation of financial stocks using particle swarm optimization," Post-Print hal-02938876, HAL.
  • Handle: RePEc:hal:journl:hal-02938876
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02938876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.