IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02880932.html
   My bibliography  Save this paper

Machine learning in explaining nonprofit organizations’ participation : a driving factors analysis approach

Author

Listed:
  • Zhanxue Gong

    (Wuhan University [China])

  • Xiyuan Li

    (Wuhan University [China])

  • Jiawen Liu

    (HUST - Huazhong University of Science and Technology [Wuhan])

  • Yeming Gong

    (EM - EMLyon Business School)

Abstract

The construction of smart cities requires the participation of nonprofit organizations, but there are still some problems in the analysis of driving factors of participation. Based on this, using the structural equation model as the research method, a public satisfaction relationship model, based on the machine learning, for nonprofit organizations participating in the construction planning of smart cities was constructed in this study. At the same time, corresponding assumptions are set, and data are collected through questionnaires. Afterward, the Likert tenth scale was used to score questionnaire questions, and deep learning was conducted in conjunction with the model. The research shows that the model established in this study has good analytical results and has certain practical effects. It can provide suggestions for optimization and can provide theoretical references for subsequent research.

Suggested Citation

  • Zhanxue Gong & Xiyuan Li & Jiawen Liu & Yeming Gong, 2019. "Machine learning in explaining nonprofit organizations’ participation : a driving factors analysis approach," Post-Print hal-02880932, HAL.
  • Handle: RePEc:hal:journl:hal-02880932
    DOI: 10.1007/s00521-018-3858-6
    Note: View the original document on HAL open archive server: https://hal.science/hal-02880932
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02880932/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s00521-018-3858-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Mazhar Rathore & Anand Paul & Awais Ahmad & Gwanggil Jeon, 2017. "IoT-Based Big Data: From Smart City towards Next Generation Super City Planning," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 13(1), pages 28-47, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana De Las Heras & Amalia Luque-Sendra & Francisco Zamora-Polo, 2020. "Machine Learning Technologies for Sustainability in Smart Cities in the Post-COVID Era," Sustainability, MDPI, vol. 12(22), pages 1-25, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikhlesh Pathik & Rajeev Kumar Gupta & Yatendra Sahu & Ashutosh Sharma & Mehedi Masud & Mohammed Baz, 2022. "AI Enabled Accident Detection and Alert System Using IoT and Deep Learning for Smart Cities," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    2. Soumya J. Bhat & K. V. Santhosh, 2022. "Localization of isotropic and anisotropic wireless sensor networks in 2D and 3D fields," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 79(2), pages 309-321, February.
    3. Johannes Stübinger & Lucas Schneider, 2020. "Understanding Smart City—A Data-Driven Literature Review," Sustainability, MDPI, vol. 12(20), pages 1-23, October.
    4. Eunbee Gil & Yongjin Ahn & Youngsang Kwon, 2020. "Tourist Attraction and Points of Interest (POIs) Using Search Engine Data: Case of Seoul," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    5. Shaohua Wang & Xianxiong Liu & Haiyin Wang & Qingwu Hu, 2018. "A Case Study on Spatio-Temporal Data Mining of Urban Social Management Events Based on Ontology Semantic Analysis," Sustainability, MDPI, vol. 10(6), pages 1-24, June.
    6. Rehman Abdul & Anand Paul & Junaid Gul M. & Won-Hwa Hong & Hyuncheol Seo, 2018. "Exploiting Small World Problems in a SIoT Environment," Energies, MDPI, vol. 11(8), pages 1-18, August.
    7. Johan Meppelink & Jens Van Langen & Arno Siebes & Marco Spruit, 2020. "Beware Thy Bias: Scaling Mobile Phone Data to Measure Traffic Intensities," Sustainability, MDPI, vol. 12(9), pages 1-19, May.

    More about this item

    Keywords

    Machine learning; Artificial Intelligence; AI-based Management; Machine Learning; non-profit organization; smart city; public satisfaction;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02880932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.