IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02486328.html
   My bibliography  Save this paper

Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project

Author

Listed:
  • Johannes van Der Pol

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

Abstract

Exponential family random graph models (ERGM) are increasingly used in the study of social networks. These models are build to explain the global structure of a network while allowing inference on tie prediction on a micro level. The number of papers within economics is however limited. Possible applications for economics are however abundant. The aim of this document is to provide an explanation of the basic mechanics behind the models and provide a sample code (using R and the packages statnet and ERGM) to operationalize and interpret results and analyse goodness of fit. After reading this paper the reader should be able to start their own analysis.

Suggested Citation

  • Johannes van Der Pol, 2018. "Introduction to Network Modeling Using Exponential Random Graph Models (ERGM): Theory and an Application Using R-Project," Post-Print hal-02486328, HAL.
  • Handle: RePEc:hal:journl:hal-02486328
    DOI: 10.1007/s10614-018-9853-2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02486328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.