IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02443385.html
   My bibliography  Save this paper

Analyse du discours médical sur Twitter®. Étude d’un corpus de tweets émis par des médecins généralistes entre juin 2012 et mars 2017 et contenant le hashtag #DocTocToc

Author

Listed:
  • A. Salles

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • J. Dufour

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • P. Hassanaly

    (SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale)

  • P. Michel

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • C. Cabot

    (D2IM - Département d’Informatique et d’Information Médicales [CHU Rouen] - CHU Rouen - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université, TIBS - LITIS - Equipe Traitement de l'information en Biologie Santé - LITIS - Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes - ULH - Université Le Havre Normandie - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université - INSA Rouen Normandie - Institut national des sciences appliquées Rouen Normandie - INSA - Institut National des Sciences Appliquées - NU - Normandie Université)

  • J. Grosjean

    (LIMICS - Laboratoire d'Informatique Médicale et Ingénierie des Connaissances en e-Santé - UP13 - Université Paris 13 - INSERM - Institut National de la Santé et de la Recherche Médicale - SU - Sorbonne Université, D2IM - Département d’Informatique et d’Information Médicales [CHU Rouen] - CHU Rouen - NU - Normandie Université - UNIROUEN - Université de Rouen Normandie - NU - Normandie Université)

Abstract

Introduction Les technologies de l'information et de la communication ont permis la naissance du web 2.0, caractérisé par la mise en place et l'utilisation de nouveaux outils collaboratifs de communication tels que les blogs, les wikis, les fils RSS et les réseaux sociaux. En s'appropriant ces outils, une médecine participative basée sur le partage d'informations et d'expériences entre professionnels, patients et tout acteur de la santé s'est développée. Depuis juin 2012, une communauté médicale échange sur Twitter avec le hashtag #DocTocToc et contribue à la naissance de la e-santé sur ce réseau social. L'objectif de cette étude est d'analyser les principales thématiques des demandes effectuées via le hashtag #DocTocToc par les médecins généralistes entre juin 2012 et mars 2017. Méthodes Une collecte de données par une méthode de « web scraping » a permis de constituer un corpus de tweets dont les auteurs ont été identifiés manuellement afin de procéder à un échantillonnage, de façon à ne conserver que les tweets émis par les médecins généralistes. Une étape de prétraitement a permis de transformer les formes potentiellement non reconnues par les logiciels de traitement du langage naturel. Le corpus a été appréhendé à l'aide de deux approches : une approche lexicale via le logiciel Iramuteq® et une indexation terminologique par l'extracteur de concepts multi-terminologiques (ECMT) du Catalogue et index des sites médicaux francophones (CISMeF). Résultats Sur les 12 716 tweets recueillis, 7366 étaient rédigés par des médecins généralistes et ont été analysés. L'approche lexicale détermine deux grands mondes lexicaux représentés sous forme de dendrogramme, l'un en lien avec les demandes médico administratives relatives à la gestion du cabinet et à la prise en charge sociale du patient, l'autre en lien avec les demandes d'ordre purement médicales. La méthode d'indexation terminologique met en évidence les spécialités médicales pourvoyeuses de demandes de télé-expertise : gynécologie, neurologie, infectiologie, pédiatrie, cardiologie, dermatologie ; et permet de les croiser avec l'objectif de la demande : diagnostic, thérapeutique. Conclusion Sur Twitter®, le hashtag #DocTocToc est utilisé par les médecins généralistes comme un espace de partage informel d'informations en matière de santé mais aussi de gestion de problèmes administratifs et sociaux. Le DocsTocToc se présente comme un groupe d'échange de pratique à grande échelle ou le médecin compte sur l'avis de ses pairs.(Fig. 1)

Suggested Citation

  • A. Salles & J. Dufour & P. Hassanaly & P. Michel & C. Cabot & J. Grosjean, 2019. "Analyse du discours médical sur Twitter®. Étude d’un corpus de tweets émis par des médecins généralistes entre juin 2012 et mars 2017 et contenant le hashtag #DocTocToc," Post-Print hal-02443385, HAL.
  • Handle: RePEc:hal:journl:hal-02443385
    DOI: 10.1016/j.respe.2019.03.027
    Note: View the original document on HAL open archive server: https://amu.hal.science/hal-02443385v1
    as

    Download full text from publisher

    File URL: https://amu.hal.science/hal-02443385v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.respe.2019.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Keywords

    Text mining; Big data; Communication; e-santé; Twitter;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02443385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.