IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02404154.html
   My bibliography  Save this paper

Transfer Pathways and Fluxes of Water-Soluble Pesticides in Various Compartments of the Agricultural Catchment of the Canche River (Northern France)

Author

Listed:
  • Angel Belles

    (Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

  • Claire Alary

    (LGCgE - Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 - UA - Université d'Artois - Université de Lille - IMT Lille Douai - Ecole nationale supérieure Mines-Télécom Lille Douai - IMT - Institut Mines-Télécom [Paris] - JUNIA - JUNIA - UCL - Université catholique de Lille, IMT Nord Europe - Ecole nationale supérieure Mines-Télécom Lille Douai - IMT - Institut Mines-Télécom [Paris])

  • Agnès Rivière

    (GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

  • Sophie Guillon

    (GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

  • Edouard Patault

    (GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

  • Nicolas Flipo

    (GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

  • Christine Franke

    (GEOSCIENCES - Centre de Géosciences - Mines Paris - PSL (École nationale supérieure des mines de Paris) - PSL - Université Paris Sciences et Lettres)

Abstract

Five frequently used water-soluble pesticides (atrazine, diflufenican, metolachlor, pendimethalin, and ethofumesate) were monitored in surface water and groundwater of an agricultural catchment (Canche River) in Northern France for examining the edge-of-field pathways of substances and their characteristic time of transport. The study of surface water contamination was conducted in 2016 through two time scales: continuously over one year at a single location of the catchment and punctually during four seasons at 15 sampling locations along a longitudinal river profile. In addition, groundwater in winter and summer shows a generally low and relatively constant contamination level. Nevertheless, the outflow of pesticides from groundwater results in a background contamination of surface water. In addition to this, a contamination peak above the baseline level is observed in surface water subsequently to the period of substance application on the fields. Our results show that pesticides were essentially transported into the surface water by fast flow components (runoff water). Loss of pesticides during the contamination peak period and long-term monitoring were compared showing that the transport of substances within weeks after pesticides spreading dominates the annual flux of pesticides, except for atrazine which shows a constant background contamination pattern. Low frequency monitoring schemes provide only a partial picture of the contamination state and do not enable to evaluate the true contamination state of such rivers with regard to the fact that 3/4 of the annual load of pesticides are transported in the stream during only 2-3 months.

Suggested Citation

  • Angel Belles & Claire Alary & Agnès Rivière & Sophie Guillon & Edouard Patault & Nicolas Flipo & Christine Franke, 2019. "Transfer Pathways and Fluxes of Water-Soluble Pesticides in Various Compartments of the Agricultural Catchment of the Canche River (Northern France)," Post-Print hal-02404154, HAL.
  • Handle: RePEc:hal:journl:hal-02404154
    DOI: 10.3390/w11071428
    Note: View the original document on HAL open archive server: https://hal.science/hal-02404154v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02404154v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/w11071428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Aliewi & H. Al-Enezi & I. Al-Maheimid & J. Al-Kandari & A. Al-Haddad & H. Al-Qallaf & T. Rashid & D. Sadeqi, 2020. "Sustainability of brackish groundwater utilization from the Eocene Aquifer for oil exploration operations in central Kuwait," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4639-4653, June.
    2. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    3. Zahra Allahdad & Saeed Malmasi & Morvarid Montazeralzohour & Seyed Mohammad Moein Sadeghi & Mohammad M. Khabbazan, 2022. "Presenting the Spatio-Temporal Model for Predicting and Determining Permissible Land Use Changes Based on Drinking Water Quality Standards: A Case Study of Northern Iran," Resources, MDPI, vol. 11(11), pages 1-14, November.
    4. Manhong Shen & Yongliang Yang, 2017. "The Water Pollution Policy Regime Shift and Boundary Pollution: Evidence from the Change of Water Pollution Levels in China," Sustainability, MDPI, vol. 9(8), pages 1-22, August.
    5. Barbara Tchórzewska-Cieślak & Katarzyna Pietrucha-Urbanik & Emilia Kuliczkowska, 2020. "An Approach to Analysing Water Consumers’ Acceptance of Risk-Reduction Costs," Resources, MDPI, vol. 9(11), pages 1-16, November.
    6. Yuangang Li & Maohua Sun & Guanghui Yuan & Yujing Liu, 2019. "Evaluation Methods of Water Environment Safety and Their Application to the Three Northeast Provinces of China," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    7. Xu Yang & Guangxing Ji & Chong Wang & Jingping Zuo & Haiqing Yang & Jianhua Xu & Ruishan Chen, 2019. "Modeling nitrogen and phosphorus export with InVEST model in Bosten Lake basin of Northwest China," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    8. Chang-Seong Kim & Maimoona Raza & Jin-Yong Lee & Heejung Kim & Chanhyeok Jeon & Bora Kim & Jeong-Woo Kim & Rak-Hyeon Kim, 2020. "Factors Controlling the Spatial Distribution and Temporal Trend of Nationwide Groundwater Quality in Korea," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    9. Xi Yang & Xingwei Chen, 2021. "Using a combined evaluation method to assess water resources sustainable utilization in Fujian Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 8047-8061, May.
    10. Angela Gorgoglione & Andrea Gioia & Vito Iacobellis, 2019. "A Framework for Assessing Modeling Performance and Effects of Rainfall-Catchment-Drainage Characteristics on Nutrient Urban Runoff in Poorly Gauged Watersheds," Sustainability, MDPI, vol. 11(18), pages 1-16, September.
    11. Iván P. Vizcaíno & Enrique V. Carrera & Sergio Muñoz-Romero & Luis H. Cumbal & José Luis Rojo-Álvarez, 2018. "Spatio-Temporal River Contamination Measurements with Electrochemical Probes and Mobile Sensor Networks," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    12. Xiaonan Ji & Jianghai Chen & Yali Guo, 2022. "A Multi-Dimensional Investigation on Water Quality of Urban Rivers with Emphasis on Implications for the Optimization of Monitoring Strategy," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    13. Yinghui Li & Shuaijin Huang & Xuexin Qu, 2017. "Water Pollution Prediction in the Three Gorges Reservoir Area and Countermeasures for Sustainable Development of the Water Environment," IJERPH, MDPI, vol. 14(11), pages 1-18, October.
    14. Weili Duan & Bin He & Yaning Chen & Shan Zou & Yi Wang & Daniel Nover & Wen Chen & Guishan Yang, 2018. "Identification of long-term trends and seasonality in high-frequency water quality data from the Yangtze River basin, China," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.
    15. Guoshuai Qin & Jianwei Liu & Shiguo Xu & Ya Sun, 2021. "Pollution Source Apportionment and Water Quality Risk Evaluation of a Drinking Water Reservoir during Flood Seasons," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    16. Qing Gu & Yao Zhang & Ligang Ma & Jiadan Li & Ke Wang & Kefeng Zheng & Xiaobin Zhang & Li Sheng, 2016. "Assessment of Reservoir Water Quality Using Multivariate Statistical Techniques: A Case Study of Qiandao Lake, China," Sustainability, MDPI, vol. 8(3), pages 1-17, March.
    17. Angelica M. Moncada & Assefa M. Melesse & Jagath Vithanage & René M. Price, 2021. "Long-Term Assessment of Surface Water Quality in a Highly Managed Estuary Basin," IJERPH, MDPI, vol. 18(17), pages 1-24, September.
    18. Zhendong Hong & Qinghe Zhao & Jinlong Chang & Li Peng & Shuoqian Wang & Yongyi Hong & Gangjun Liu & Shengyan Ding, 2020. "Evaluation of Water Quality and Heavy Metals in Wetlands along the Yellow River in Henan Province," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    19. Kaiyan Zhao & Huawu Wu & Wen Chen & Wei Sun & Haixia Zhang & Weili Duan & Wenjun Chen & Bin He, 2020. "Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    20. Wei Sun & Yi Wang & Wen Chen & Bin He & Chong-Gang Liu, 2020. "Basin Water Sensitivity and Its Impact on Spatial Expansion: A Case Study of the Taihu Basin, China," Sustainability, MDPI, vol. 12(24), pages 1-18, December.

    More about this item

    Keywords

    water-soluble pesticides; transfer pathways; Canche River watershed; agricultural catchment; runoff; surface water; groundwater; flux rate;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02404154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.