IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02313031.html
   My bibliography  Save this paper

A stochastic aggregate production planning model in a green supply chain : Considering flexible lead times, nonlinear purchase and shortage cost functions

Author

Listed:
  • Seyed Mohammad Javad Mirzapour Al-E-Hashem

    (EM - EMLyon Business School)

  • Armand Baboli
  • Z. Sazvar

Abstract

In this paper we develop a stochastic programming approach to solve a multi-period multi-product multi-site aggregate production planning problem in a green supply chain for a medium-term planning horizon under the assumption of demand uncertainty. The proposed model has the following features: (i) the majority of supply chain cost parameters are considered; (ii) quantity discounts to encourage the producer to order more from the suppliers in one period, instead of splitting the order into periodical small quantities, are considered; (iii) the interrelationship between lead time and transportation cost is considered, as well as that between lead time and greenhouse gas emission level; (iv) demand uncertainty is assumed to follow a pre-specified distribution function; (v) shortages are penalized by a general multiple breakpoint function, to persuade producers to reduce backorders as much as possible; (vi) some indicators of a green supply chain, such as greenhouse gas emissions and waste management are also incorporated into the model. The proposed model is first a nonlinear mixed integer programming which is converted into a linear one by applying some theoretical and numerical techniques. Due to the convexity of the model, the local solution obtained from linear programming solvers is also the global solution. Finally, a numerical example is presented to demonstrate the validity of the proposed model.

Suggested Citation

  • Seyed Mohammad Javad Mirzapour Al-E-Hashem & Armand Baboli & Z. Sazvar, 2013. "A stochastic aggregate production planning model in a green supply chain : Considering flexible lead times, nonlinear purchase and shortage cost functions," Post-Print hal-02313031, HAL.
  • Handle: RePEc:hal:journl:hal-02313031
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghanbarzadeh-Shams, M. & Ghasemy Yaghin, R. & Sadeghi, A.H., 2022. "A hybrid fuzzy multi-objective model for carpet production planning with reverse logistics under uncertainty," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    2. Sobhani, A. & Wahab, M.I.M. & Neumann, W.P., 2015. "Investigating work-related ill health effects in optimizing the performance of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 241(3), pages 708-718.
    3. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    4. Bairamzadeh, Samira & Saidi-Mehrabad, Mohammad & Pishvaee, Mir Saman, 2018. "Modelling different types of uncertainty in biofuel supply network design and planning: A robust optimization approach," Renewable Energy, Elsevier, vol. 116(PA), pages 500-517.
    5. Mirzapour Al-e-hashem, S.M.J. & Rekik, Yacine, 2014. "Multi-product multi-period Inventory Routing Problem with a transshipment option: A green approach," International Journal of Production Economics, Elsevier, vol. 157(C), pages 80-88.
    6. Marjia Haque & Sanjoy Kumar Paul & Ruhul Sarker & Daryl Essam, 2022. "A combined approach for modeling multi-echelon multi-period decentralized supply chain," Annals of Operations Research, Springer, vol. 315(2), pages 1665-1702, August.
    7. Ghasemy Yaghin, R. & Farmani, Zahra, 2023. "Planning a low-carbon, price-differentiated supply chain with scenario-based capacities and eco-friendly customers," International Journal of Production Economics, Elsevier, vol. 265(C).
    8. Mirzapour Al-e-hashem, Seyed M.J. & Rekik, Yacine & Mohammadi Hoseinhajlou, Ebrahim, 2019. "A hybrid L-shaped method to solve a bi-objective stochastic transshipment-enabled inventory routing problem," International Journal of Production Economics, Elsevier, vol. 209(C), pages 381-398.
    9. Jabbarzadeh, Armin & Haughton, Michael & Pourmehdi, Fahime, 2019. "A robust optimization model for efficient and green supply chain planning with postponement strategy," International Journal of Production Economics, Elsevier, vol. 214(C), pages 266-283.
    10. Yang, Xianyan & Li, Feng & Liu, Zhixue & Xu, Zhou, 2024. "New exact and heuristic algorithms for general production and delivery integration," European Journal of Operational Research, Elsevier, vol. 316(2), pages 419-442.
    11. Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
    12. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    13. M. Boronoos & M. Mousazadeh & S. Ali Torabi, 2021. "A robust mixed flexible-possibilistic programming approach for multi-objective closed-loop green supply chain network design," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 3368-3395, March.
    14. Sazvar, Z. & Mirzapour Al-e-hashem, S.M.J. & Baboli, A. & Akbari Jokar, M.R., 2014. "A bi-objective stochastic programming model for a centralized green supply chain with deteriorating products," International Journal of Production Economics, Elsevier, vol. 150(C), pages 140-154.
    15. Mishra, Mowmita & Ghosh, Santanu Kumar & Sarkar, Biswajit & Sarkar, Mitali & Hota, Soumya Kanti, 2024. "Risk management for barter exchange policy under retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    16. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    17. Kuo-Ping Lin & Kuo-Chen Hung & Yu-Ting Lin & Yao-Hung Hsieh, 2017. "Green Suppliers Performance Evaluation in Belt and Road Using Fuzzy Weighted Average with Social Media Information," Sustainability, MDPI, vol. 10(1), pages 1-11, December.
    18. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
    19. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    20. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    21. Farnaz Barzinpour & Peyman Taki, 2018. "A dual-channel network design model in a green supply chain considering pricing and transportation mode choice," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1465-1483, October.
    22. Eduardo Gutiérrez González & Olga Vladimirovna Panteleeva, 2020. "A model for planning and optimizing an engineering company production," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 669-699, September.
    23. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2020. "A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02313031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.