IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02312260.html
   My bibliography  Save this paper

Optimizing immune cell therapies with artificial intelligence

Author

Listed:
  • Nicolas Houy

    (EM - EMLyon Business School)

  • François Le Grand

Abstract

Purpose: We determine an optimal injection pattern for anti-vascular endothelial growth factor (VEGF) and for the combination of anti-VEGF and unlicensed dendritic cells. Methods: We rely on the mathematical model of Soto-Ortiz and Finley (2016) for the interactions between the tumor growth, angiogenesis and immune system reactions. Our optimization algorithm belongs to the class of Monte-Carlo tree search algorithms. The objective consists in finding the minimal total drug doses for which an injection pattern yields tumor eradication. Results: Our results are twofold. First, optimized injection protocols enable to significantly reduce the total drug dose for tumor elimination. For instance, for an early diagnosis date, a total dose equal to 58% of the standard anti-VEGF dose enables to eliminate the tumor. In the case of drug combination, associating 25% of the total standard anti-VEGF dose to 10% of the dendritic cell total standard dose eradicates tumor. Our second result is that administering a dose equal to the maximal standard dose allows for later diagnosis date compared to standard protocol. For instance, in the case of anti-VEGF injection, the optimal protocol postpones the maximal diagnosis date by more than one month. Conclusions. Overall, our optimization based on artificial intelligence delivers significant gains in total drug administration or in the length of the therapeutic window. Our method is flexible and could be adapted to other drug combinations.

Suggested Citation

  • Nicolas Houy & François Le Grand, 2019. "Optimizing immune cell therapies with artificial intelligence," Post-Print hal-02312260, HAL.
  • Handle: RePEc:hal:journl:hal-02312260
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Houy & Julien Flaig, 2021. "Hospital-wide surveillance-based antimicrobial treatments: A Monte-Carlo look-ahead method," Post-Print halshs-03506952, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02312260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.