IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02157744.html
   My bibliography  Save this paper

Statistically validated hierarchical clustering: Nested partitions in hierarchical trees

Author

Listed:
  • Christian Bongiorno

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

  • Salvatore Miccichè

    (DiFC - Dipartimento di Fisica e Chimica [Palermo] - Università degli studi di Palermo - University of Palermo)

  • Rosario N Mantegna

    (DiFC - Dipartimento di Fisica e Chimica [Palermo] - Università degli studi di Palermo - University of Palermo, CSHV - Complexity Science Hub Vienna, UCL-CS - Department of Computer science [University College of London] - UCL - University College of London [London])

Abstract

We develop a greedy algorithm that is fast and scalable in the detection of a nested partition extracted from a dendrogram obtained from hierarchical clustering of a multivariate series. Our algorithm provides a p-value for each clade observed in the hierarchical tree. The p-value is obtained by computing a number of bootstrap replicas of the dissimilarity matrix and by performing a statistical test on each difference between the dissimilarity associated with a given clade and the dissimilarity of the clade of its parent node. We prove the efficacy of our algorithm with a set of benchmarks generated by using a hierarchical factor model. We compare the results obtained by our algorithm with those of Pvclust. Pvclust is a widely used algorithm developed with a global approach originally motivated by phylogenetic studies. In our numerical experiments we focus on the role of multiple hypothesis test correction and on the robustness of the algorithms to inaccuracy and errors of datasets. We also apply our algorithm to a reference empirical dataset. We verify that our algorithm is much faster than Pvclust algorithm and has a better scalability both in the number of elements and in the number of records of the investigated multivariate set. Our algorithm provides a hierarchically nested partition in much shorter time than currently widely used algorithms allowing to perform a statistically validated cluster analysis detection in very large systems.

Suggested Citation

  • Christian Bongiorno & Salvatore Miccichè & Rosario N Mantegna, 2022. "Statistically validated hierarchical clustering: Nested partitions in hierarchical trees," Post-Print hal-02157744, HAL.
  • Handle: RePEc:hal:journl:hal-02157744
    DOI: 10.1016/j.physa.2022.126933
    Note: View the original document on HAL open archive server: https://hal.science/hal-02157744
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02157744/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.physa.2022.126933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    2. G. Bonanno & G. Caldarelli & F. Lillo & S. Micciché & N. Vandewalle & R. Mantegna, 2004. "Networks of equities in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 38(2), pages 363-371, March.
    3. Robert Tibshirani & Guenther Walther & Trevor Hastie, 2001. "Estimating the number of clusters in a data set via the gap statistic," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 411-423.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. John Schmid & John Leiman, 1957. "The development of hierarchical factor solutions," Psychometrika, Springer;The Psychometric Society, vol. 22(1), pages 53-61, March.
    6. Brock, Guy & Pihur, Vasyl & Datta, Susmita & Datta, Somnath, 2008. "clValid: An R Package for Cluster Validation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i04).
    7. C. Coronnello & M. Tumminello & F. Lillo & S. Miccich`e & R. N. Mantegna, 2005. "Sector identification in a set of stock return time series traded at the London Stock Exchange," Papers cond-mat/0508122, arXiv.org.
    8. Musciotto, Federico & Marotta, Luca & Miccichè, Salvatore & Piilo, Jyrki & Mantegna, Rosario N., 2016. "Patterns of trading profiles at the Nordic Stock Exchange. A correlation-based approach," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 267-278.
    9. Gligor, Mircea & Ausloos, Marcel, 2008. "Convergence and Cluster Structures in EU Area according to Fluctuations in Macroeconomic Indices," Journal of Economic Integration, Center for Economic Integration, Sejong University, vol. 23, pages 297-330.
    10. Park, P.J. & Manjourides, J. & Bonetti, M. & Pagano, M., 2009. "A permutation test for determining significance of clusters with applications to spatial and gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4290-4300, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adriano Bressane & Joao Pedro da Cunha Pinto & Líliam César de Castro Medeiros, 2024. "Recognizing Patterns of Nature Contact Associated with Well-Being: An Exploratory Cluster Analysis," IJERPH, MDPI, vol. 21(6), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    2. Leonidas Sandoval Junior, 2011. "A Map of the Brazilian Stock Market," Papers 1107.4146, arXiv.org, revised Mar 2013.
    3. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    4. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    5. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    6. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    7. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    8. Sebastiano Michele Zema & Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2021. "Mesoscopic Structure of the Stock Market and Portfolio Optimization," Papers 2112.06544, arXiv.org.
    9. Anna Maria D’Arcangelis & Giulia Rotundo, 2016. "Complex Networks in Finance," Lecture Notes in Economics and Mathematical Systems, in: Pasquale Commendatore & Mariano Matilla-García & Luis M. Varela & Jose S. Cánovas (ed.), Complex Networks and Dynamics, pages 209-235, Springer.
    10. Vyrost, Tomas, 2015. "Country and industry effects in CEE stock market networks: Preliminary results," MPRA Paper 65775, University Library of Munich, Germany.
    11. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    12. Nguyen, Q. & Nguyen, N.K. K. & Nguyen, L.H. N., 2019. "Dynamic topology and allometric scaling behavior on the Vietnamese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 235-243.
    13. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    14. Coletti, Paolo, 2016. "Comparing minimum spanning trees of the Italian stock market using returns and volumes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 246-261.
    15. Peng Yue & Qing Cai & Wanfeng Yan & Wei-Xing Zhou, 2020. "Information flow networks of Chinese stock market sectors," Papers 2004.08759, arXiv.org.
    16. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    17. Peralta, Gustavo & Zareei, Abalfazl, 2016. "A network approach to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 157-180.
    18. Castagna, Alina & Chentouf, Leila & Ernst, Ekkehard, 2017. "Economic vulnerabilities in Italy: A network analysis using similarities in sectoral employment," GLO Discussion Paper Series 50, Global Labor Organization (GLO).
    19. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    20. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02157744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.