IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01858265.html
   My bibliography  Save this paper

Big Data Applications for Disaster Management

Author

Listed:
  • Muhammad Arslan

    (Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - Arts et Métiers Sciences et Technologies - HESAM - HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université - CNRS - Centre National de la Recherche Scientifique)

  • Ana-Maria Roxin

    (Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - Arts et Métiers Sciences et Technologies - HESAM - HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université - CNRS - Centre National de la Recherche Scientifique)

  • Christophe Cruz

    (Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - Arts et Métiers Sciences et Technologies - HESAM - HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université - CNRS - Centre National de la Recherche Scientifique)

  • Dominique Ginhac

    (Le2i - Laboratoire d'Electronique, d'Informatique et d'Image [EA 7508] - UTBM - Université de Technologie de Belfort-Montbeliard - UB - Université de Bourgogne - ENSAM - École Nationale Supérieure d'Arts et Métiers - Arts et Métiers Sciences et Technologies - HESAM - HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université - CNRS - Centre National de la Recherche Scientifique)

Abstract

The term "disaster management" comprises both natural and man-made disasters. Highly pervaded with various types of sensors, our environment generates large amounts of data. Thus, big data applications in the field of disaster management should adopt a modular view, going from a component to nation scale. Current research trends mainly aim at integrating component, building, neighborhood and city levels, neglecting the region level for managing disasters. Current research on big data mainly address smart buildings and smart grids, notably in the following areas: energy waste management, prediction and planning of power generation needs (based on smart meter readings, statistical learning tools, integration of renewable energy sources, open service clouds), dynamic energy management (based on real-time data reading, benchmarking, visualization and optimization), and improved comfort, usability and endurance (based on the integration of energy consumption data, environmental conditions and levels of occupancy). However, the existing literature on big data for disaster management is limited. This papers aims to address this gap by presenting a systematic literature review on the applications of big data in disaster management. The paper will first presents the visual definition of disaster management and describes big data; it will then illustrate the findings and gives future recommendations after a systematic literature review.

Suggested Citation

  • Muhammad Arslan & Ana-Maria Roxin & Christophe Cruz & Dominique Ginhac, 2017. "Big Data Applications for Disaster Management," Post-Print hal-01858265, HAL.
  • Handle: RePEc:hal:journl:hal-01858265
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurini, Robert, 2021. "A primer of knowledge management for smart city governance," Land Use Policy, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01858265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.