IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01632887.html
   My bibliography  Save this paper

A Regularized Kalman Filter (rgKF) for Spiky Data

Author

Listed:
  • Serge Darolles

    (DRM - Dauphine Recherches en Management - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique)

  • Patrick Duvaut
  • Emmanuelle Jay

Abstract

This chapter presents a new family of algorithms named regularized Kalman Filters (rgKFs) that have been derived to detect and estimate exogenous outliers that might occur in the observation equation of a standard Kalman filter (KF). Inspired from the robust Kalman filter (RKF) of Mattingley and Boyd, which makes use of a l1-regularization step, the authors introduce a simple but efficient detection step in the recursive equations of the RKF. This solution is one means by which to solve the problem of adapting the value of the l1-regularization parameter: when an outlier is detected in the innovation term of the KF, the value of the regularization parameter is set to a value that will let the l1-based optimization problem estimate the amplitude of the spike. The chapter deals with the application of algorithm to detect irregularities in hedge fund returns.

Suggested Citation

  • Serge Darolles & Patrick Duvaut & Emmanuelle Jay, 2013. "A Regularized Kalman Filter (rgKF) for Spiky Data," Post-Print hal-01632887, HAL.
  • Handle: RePEc:hal:journl:hal-01632887
    DOI: 10.1002/9781118577387.ch4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01632887. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.