IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01498478.html
   My bibliography  Save this paper

Stock picking by Probability-Possibility approaches

Author

Listed:
  • Jean-Marc Le Caillec

    (Lab-STICC_TB_CID_SFIIS - Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance - UEB - Université européenne de Bretagne - European University of Brittany - ENIB - École Nationale d'Ingénieurs de Brest - UBS - Université de Bretagne Sud - UBO - Université de Brest - Télécom Bretagne - IBNM - Institut Brestois du Numérique et des Mathématiques - UBO - Université de Brest - ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, ITI - Département Image et Traitement Information - UEB - Université européenne de Bretagne - European University of Brittany - Télécom Bretagne - IMT - Institut Mines-Télécom [Paris])

  • Alya Itani

    (Lab-STICC_TB_CID_SFIIS - Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance - UEB - Université européenne de Bretagne - European University of Brittany - ENIB - École Nationale d'Ingénieurs de Brest - UBS - Université de Bretagne Sud - UBO - Université de Brest - Télécom Bretagne - IBNM - Institut Brestois du Numérique et des Mathématiques - UBO - Université de Brest - ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, ITI - Département Image et Traitement Information - UEB - Université européenne de Bretagne - European University of Brittany - Télécom Bretagne - IMT - Institut Mines-Télécom [Paris], INFO - Département informatique - UEB - Université européenne de Bretagne - European University of Brittany - Télécom Bretagne - IMT - Institut Mines-Télécom [Paris])

  • Didier Gueriot

    (Lab-STICC_TB_CID_SFIIS - Lab-STICC - Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance - UEB - Université européenne de Bretagne - European University of Brittany - ENIB - École Nationale d'Ingénieurs de Brest - UBS - Université de Bretagne Sud - UBO - Université de Brest - Télécom Bretagne - IBNM - Institut Brestois du Numérique et des Mathématiques - UBO - Université de Brest - ENSTA Bretagne - École Nationale Supérieure de Techniques Avancées Bretagne - IMT - Institut Mines-Télécom [Paris] - CNRS - Centre National de la Recherche Scientifique, ITI - Département Image et Traitement Information - UEB - Université européenne de Bretagne - European University of Brittany - Télécom Bretagne - IMT - Institut Mines-Télécom [Paris])

  • Yves Rakotondratsimba

    (Ecole Centrale d'Electronique)

Abstract

This paper presents a performance evaluation of stock picking by merging several technical indicators. Several fusion operators have been proposed either in the probabilistic or in the possibilistic framework. The latter fuzzy framework has been introduced to manage the uncertain information embedded in financial time series due to human biases as studied by behavioral finance. Performances of portfolio resulting from the proposed systems, are evaluated according to cumulative returns but also through a risk analysis point of view (Sharpe ratio). Two fusion mechanisms (one probabilistic, one possibilistic) aiming at discriminating common information from merged technical indicators, produce the higher portfolio performances. It also appears that selecting specific technical indicators affects the overall performances of the proposed stock picking systems. Indeed, studying the technical indicators selection through a shared/non shared information point of view, reveals possibilistic framework is more robust to redundant sources than probabilistic framework. Effects of some parameters used in the fusion algorithms (amount of assets, window length analysis, . . .) are also investigated. Results from all these tests clearly show the high potentiality of technical indicators fusion to improve portfolio performances. However, these first promising results have to be further inspected within wider contexts, as discussed at the end of the paper.

Suggested Citation

  • Jean-Marc Le Caillec & Alya Itani & Didier Gueriot & Yves Rakotondratsimba, 2017. "Stock picking by Probability-Possibility approaches," Post-Print hal-01498478, HAL.
  • Handle: RePEc:hal:journl:hal-01498478
    DOI: 10.1109/TFUZZ.2016.2574921
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Apichat Chaweewanchon & Rujira Chaysiri, 2022. "Markowitz Mean-Variance Portfolio Optimization with Predictive Stock Selection Using Machine Learning," IJFS, MDPI, vol. 10(3), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01498478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.