IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01404316.html
   My bibliography  Save this paper

A model for unpacking big data analytics in high-frequency trading

Author

Listed:
  • Jonathan J.J.M. Seddon

    (Audencia Business School)

  • Wendy L. Currie

    (Audencia Business School)

Abstract

This study develops a conceptual model of the 7 V′s of big data analytics to gain a deeper understanding of the strategies and practices of high-frequency trading (HFT) in financial markets. HFT is computerized trading using proprietary algorithms. Empirical data collected from HFT firms and regulators in the US and UK reveals competitive asymmetries between HFTs and low-frequency traders (LFTs) operating more traditional forms of market trading. These findings show that HFT gains extensive market advantages over LFT due to significant investment in advanced technological architecture. Regulators are challenged to keep pace with HFT as different priorities to the 7 V′s are given in pursuit of a short term market strategy. This research has implications for regulators, financial practitioners and investors as the technological arms race is fundamentally changing the nature of global financial markets.

Suggested Citation

  • Jonathan J.J.M. Seddon & Wendy L. Currie, 2017. "A model for unpacking big data analytics in high-frequency trading," Post-Print hal-01404316, HAL.
  • Handle: RePEc:hal:journl:hal-01404316
    DOI: 10.1016/j.jbusres.2016.08.003
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adamantios Ntakaris & Martin Magris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2017. "Benchmark Dataset for Mid-Price Forecasting of Limit Order Book Data with Machine Learning Methods," Papers 1705.03233, arXiv.org, revised Mar 2020.
    2. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    3. Conboy, Kieran & Mikalef, Patrick & Dennehy, Denis & Krogstie, John, 2020. "Using business analytics to enhance dynamic capabilities in operations research: A case analysis and research agenda," European Journal of Operational Research, Elsevier, vol. 281(3), pages 656-672.
    4. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "Towards a business analytics capability for the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    5. Purva Grover & Arpan Kumar Kar, 2017. "Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 18(3), pages 203-229, September.
    6. Zeeshan Ahmed & Shahid Rasool & Qasim Saleem & Mubashir Ali Khan & Shamsa Kanwal, 2022. "Mediating Role of Risk Perception Between Behavioral Biases and Investor’s Investment Decisions," SAGE Open, , vol. 12(2), pages 21582440221, May.
    7. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    8. Hayajneh, Jamal Abdelrahman .M. & Elayan, Malek Bakheet Haroun & Abdellatif, Mamdouh Abdallah Mohamed & Abubakar, A. Mohammed, 2022. "Impact of business analytics and π-shaped skills on innovative performance: Findings from PLS-SEM and fsQCA," Technology in Society, Elsevier, vol. 68(C).
    9. Irina Bogdana Pugna & Dana Maria Boldeanu & Mirela Gheorghe & Gabriel Cozgarea & Adrian Nicolae Cozgarea, 2022. "Management Perspectives towards the Data-Driven Organization in the Energy Sector," Energies, MDPI, vol. 15(16), pages 1-20, August.
    10. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    11. Alberto Bertello & Alberto Ferraris & Stefano Bresciani & Paola Bernardi, 2021. "Big data analytics (BDA) and degree of internationalization: the interplay between governance of BDA infrastructure and BDA capabilities," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 25(4), pages 1035-1055, December.
    12. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance," International Journal of Production Economics, Elsevier, vol. 239(C).
    13. Issam Laguir & Sachin Modgil & Indranil Bose & Shivam Gupta & Rebecca Stekelorum, 2023. "Performance effects of analytics capability, disruption orientation, and resilience in the supply chain under environmental uncertainty," Annals of Operations Research, Springer, vol. 324(1), pages 1269-1293, May.
    14. Aritra Pan & Arun Kumar Misra & David McMillan, 2021. "A comprehensive study on bid-ask spread and its determinants in India," Cogent Economics & Finance, Taylor & Francis Journals, vol. 9(1), pages 1898735-189, January.
    15. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    16. Carsten Giebe, 2019. "The Chief Digital Officer – Savior for the Digitalization in German Banks?," Journal of Economic Development, Environment and People, Alliance of Central-Eastern European Universities, vol. 8(3), pages 6-15, September.
    17. Olabode, Oluwaseun E. & Boso, Nathaniel & Hultman, Magnus & Leonidou, Constantinos N., 2022. "Big data analytics capability and market performance: The roles of disruptive business models and competitive intensity," Journal of Business Research, Elsevier, vol. 139(C), pages 1218-1230.
    18. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    19. Akyildirim, Erdinc & Sensoy, Ahmet & Gulay, Guzhan & Corbet, Shaen & Salari, Hajar Novin, 2021. "Big data analytics, order imbalance and the predictability of stock returns," Journal of Multinational Financial Management, Elsevier, vol. 62(C).
    20. Benjamin Clapham & Martin Haferkorn & Kai Zimmermann, 2023. "The Impact of High-Frequency Trading on Modern Securities Markets," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(1), pages 7-24, February.
    21. Sehrish Atif & Shehzad Ahmed & Muhammad Wasim & Bassam Zeb & Zeeshan Pervez & Lorraine Quinn, 2021. "Towards a Conceptual Development of Industry 4.0, Servitisation, and Circular Economy: A Systematic Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-27, June.
    22. Maria Hoffmann Jensen & John Stouby Persson & Peter Axel Nielsen, 2023. "Measuring benefits from big data analytics projects: an action research study," Information Systems and e-Business Management, Springer, vol. 21(2), pages 323-352, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01404316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.