IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01397328.html
   My bibliography  Save this paper

Wavelet shrinkage of a noisy dynamical system with non-linear noise impact

Author

Listed:
  • Matthieu Garcin

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, Natixis Asset Management - Natixis Asset Management)

  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

By filtering wavelet coefficients, it is possible to construct a good estimate of a pure signal from noisy data. Especially, for a simple linear noise influence, Donoho and Johnstone (1994) have already defined an optimal filter design in the sense of a minimization of the error made when estimating the pure signal. We set here a different framework where the influence of the noise is non-linear. In particular, we propose a method to filter the wavelet coefficients of a discrete dynamical system disrupted by a weak noise, in order to construct good estimates of the pure signal, including Bayes' estimate, minimax estimate, oracular estimate or thresholding estimate. We present the example of a logistic and a Lorenz chaotic dynamical system as well as an adaptation of our technique in order to show empirically the robustness of the thresholding method in presence of leptokurtic noise. Moreover, we test both the hard and the soft thresholding and also another kind of smoother thresholding which seems to have almost the same reconstruction power as the hard thresholding. Finally, besides the tests on an estimated dataset, the method is tested on financial data: oil prices and NOK/USD exchange rate.

Suggested Citation

  • Matthieu Garcin & Dominique Guegan, 2016. "Wavelet shrinkage of a noisy dynamical system with non-linear noise impact," Post-Print hal-01397328, HAL.
  • Handle: RePEc:hal:journl:hal-01397328
    DOI: 10.1016/j.physd.2016.03.013
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin, 2019. "Hurst Exponents And Delampertized Fractional Brownian Motions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-26, August.
    2. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    3. Ayoub Ammy-Driss & Matthieu Garcin, 2020. "Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics," Papers 2007.10727, arXiv.org, revised Nov 2021.
    4. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01397328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.