IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01066492.html
   My bibliography  Save this paper

Classification models via Tabu search: An application to early stage venture classification

Author

Listed:
  • Samir Elhedhli

    (Department of Management Sciences - University of Waterloo [Waterloo])

  • Canan Akdemir

    (Department of Management Sciences - University of Waterloo [Waterloo])

  • Thomas Astebro

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

Abstract

We model the decision making process used by Experts at the Canadian Innovation Centre to classify early stage venture proposals based on potential commercial success. The decision is based on thirty-seven attributes that take values in {-1,0,1}{-1,0,1}. We adopt a conjunctive decision framework due to Åstebro and Elhedhli (2005) that selects a subset of attributes and determines two threshold values: one for the maximum allowed negatives (n) and one for minimum required positives (p). A proposal is classified as a success if the number of positives is greater than or equal to p and the number of negatives is less than or equal to n over the selected attributes. Based on a data set of 561 observations, the selection of attributes and the determination of the threshold values is modeled as a large-scale mixed integer program. Two solution approaches are explored: Benders decomposition and Tabu search. The first, was very slow to converge, while the second provided high quality solutions quickly. Tabu search provides excellent classification accuracy for predicting commercial successes as well as replicating Experts' forecasts, opening the venue for the use of Tabu search in scoring and classification problems.

Suggested Citation

  • Samir Elhedhli & Canan Akdemir & Thomas Astebro, 2014. "Classification models via Tabu search: An application to early stage venture classification," Post-Print hal-01066492, HAL.
  • Handle: RePEc:hal:journl:hal-01066492
    DOI: 10.1016/j.eswa.2014.07.010
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daiva Stanelyte & Virginijus Radziukynas, 2019. "Review of Voltage and Reactive Power Control Algorithms in Electrical Distribution Networks," Energies, MDPI, vol. 13(1), pages 1-26, December.
    2. Giuseppe Fusco & Mario Russo & Michele De Santis, 2021. "Decentralized Voltage Control in Active Distribution Systems: Features and Open Issues," Energies, MDPI, vol. 14(9), pages 1-31, April.

    More about this item

    Keywords

    Classification models; Mixed integer program; Tabu search;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01066492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.