IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00859457.html
   My bibliography  Save this paper

A solution for forecasting pet chips prices for both short-term and long-term price forcasting, using genetic programming

Author

Listed:
  • Mojtaba Sedigh Fazli

    (Laboratoire de Recherche Magellan - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - Institut d'Administration des Entreprises (IAE) - Lyon)

  • Jean-Fabrice Lebraty

    (Laboratoire de Recherche Magellan - UJML - Université Jean Moulin - Lyon 3 - Université de Lyon - Institut d'Administration des Entreprises (IAE) - Lyon)

Abstract

Nowadays, forecasting what will happen in economic environments plays a crucial role. We showed that in PET market how a neuro-fuzzy hybrid model can assist the managers in decision-making. In this research, the target is to forecast the same item through another intelligent tool which obeys the evolutionary processing mechanisms. Again, the item for prediction here is PET (Poly Ethylene Terephthalate) which is the raw material for textile industries and it is highly sensitive against oil price fluctuations and also some other factors such as the demand and supply ratio. The main idea is coming through AHIS model which was presented by Mojtaba Sedigh Fazli and J.F. Lebraty in 2013. In this communication, the hybrid module is substituted with genetic programming. Finally, the simulation has been conducted and compared to three different answers which were presented before the results show that Genetic programming results (acting like hybrid model) which support both Fuzzy Systems and Neural Networks, satisfy the research question considerably.

Suggested Citation

  • Mojtaba Sedigh Fazli & Jean-Fabrice Lebraty, 2013. "A solution for forecasting pet chips prices for both short-term and long-term price forcasting, using genetic programming," Post-Print hal-00859457, HAL.
  • Handle: RePEc:hal:journl:hal-00859457
    Note: View the original document on HAL open archive server: https://univ-lyon3.hal.science/hal-00859457
    as

    Download full text from publisher

    File URL: https://univ-lyon3.hal.science/hal-00859457/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mojtaba Sedigh Fazli & Jean-Fabrice Lebraty, 2013. "A comparative study on forecasting polyester chips prices for 15 days, using different hybrid intelligent systems," Post-Print hal-00859445, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Keywords

      Hybrid Neuro Fuzzy Model; Efficient Market Hypothesis; Financial Forecasting; Chemicals; Artificial Intelligence; Genetic Programming; Decision Support System; Hybrid Neuro Fuzzy Model.;
      All these keywords.

      NEP fields

      This paper has been announced in the following NEP Reports:

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00859457. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.