IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00796338.html
   My bibliography  Save this paper

State Dependent Models of Material Handling Systems in Closed Queueing Networks

Author

Listed:
  • Laoucine Kerbache

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique)

  • J. Macgregor Smith

    (Department of Mechanical and Industrial Engineering [UMass] - UMass Amherst - University of Massachusetts [Amherst] - UMASS - University of Massachusetts System)

Abstract

A comprehensive algorithmic analysis of finite state-dependent queueing models and exponentially distributed workstations is formulated and presented. The material handling system is modeled with finite state-dependent queueing network M/G/c/c models and the individual workstations are modeled with exponentially distributed single and multi-server M/M/c queueing models. The coupling of these queueing models is unique via the material handling structure. The performance modeling of the systems for series, merge, and split and other complex network topologies are included so as to demonstrate the type of topological network design that is possible with these incorporated material handling systems. Of some importance, it is shown that these integrated M/M/c and M/G/c/c networks have a product form when the population arriving at the M/G/c/c queues is controlled. Numerous experimental results demonstrate the efficacy of our approach for a variety of contexts and situations.

Suggested Citation

  • Laoucine Kerbache & J. Macgregor Smith, 2012. "State Dependent Models of Material Handling Systems in Closed Queueing Networks," Post-Print hal-00796338, HAL.
  • Handle: RePEc:hal:journl:hal-00796338
    DOI: 10.1080/00207543.2010.535041
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruzelan Khalid & Mohd Kamal M. Nawawi & Luthful A Kawsar & Noraida A Ghani & Anton A Kamil & Adli Mustafa, 2013. "A Discrete Event Simulation Model for Evaluating the Performances of an M/G/C/C State Dependent Queuing System," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    2. Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. James MacGregor Smith, 2018. "Simultaneous buffer and service rate allocation in open finite queueing networks," IISE Transactions, Taylor & Francis Journals, vol. 50(3), pages 203-216, March.
    4. J. Smith, 2015. "Optimal workload allocation in closed queueing networks with state dependent queues," Annals of Operations Research, Springer, vol. 231(1), pages 157-183, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00796338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.