IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00788068.html
   My bibliography  Save this paper

A Probability-Mapping Algorithm for Calibrating the Posterior Probabilities: A Direct Marketing Application

Author

Listed:
  • K. Coussement

    (LEM - Lille - Economie et Management - Université de Lille, Sciences et Technologies - CNRS - Centre National de la Recherche Scientifique)

  • W. Buckinx

Abstract

Calibration refers to the adjustment of the posterior probabilities output by a classification algorithm towards the true prior probability distribution of the target classes. This adjustment is necessary to account for the difference in prior distributions between the training set and the test set. This article proposes a new calibration method, called the probability-mapping approach. Two types of mapping are proposed: linear and non-linear probability mapping. These new calibration techniques are applied to 9 real-life direct marketing datasets. The newly-proposed techniques are compared with the original, non-calibrated posterior probabilities and the adjusted posterior probabilities obtained using the rescaling algorithm of Saerens et al. (2002). The results recommend that marketing researchers must calibrate the posterior probabilities obtained from the classifier. Moreover, it is shown that using a 'simple' rescaling algorithm is not a first and workable solution, because the results suggest applying the newly-proposed non-linear probability-mapping approach for best calibration performance.

Suggested Citation

  • K. Coussement & W. Buckinx, 2011. "A Probability-Mapping Algorithm for Calibrating the Posterior Probabilities: A Direct Marketing Application," Post-Print hal-00788068, HAL.
  • Handle: RePEc:hal:journl:hal-00788068
    DOI: 10.1016/j.ejor.2011.05.027
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.
    2. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    3. Somayeh Moazeni & Boris Defourny & Monika J. Wilczak, 2020. "Sequential Learning in Designing Marketing Campaigns for Market Entry," Management Science, INFORMS, vol. 66(9), pages 4226-4245, September.
    4. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    5. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    6. Lessmann, Stefan & Coussement, Kristof & De Bock, Koen W. & Haupt, Johannes, 2018. "Targeting customers for profit: An ensemble learning framework to support marketing decision making," IRTG 1792 Discussion Papers 2018-012, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00788068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.