IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00757701.html
   My bibliography  Save this paper

Record Statistics for Multiple Random Walks

Author

Listed:
  • Gregor Wergen

    (Institut für Theoretische Physik [Köln] - Universität zu Köln = University of Cologne)

  • Satya N. Majumdar

    (LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique)

  • Gregory Schehr

    (LPTMS - Laboratoire de Physique Théorique et Modèles Statistiques - UP11 - Université Paris-Sud - Paris 11 - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study the statistics of the number of records R_{n,N} for N identical and independent symmetric discrete-time random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps by a random length drawn independently from a symmetric and continuous distribution. We consider two cases: (I) when the variance \sigma^2 of the jump distribution is finite and (II) when \sigma^2 is divergent as in the case of Lévy flights with index 0 1 in the two cases. We find that for large N, \alpha_N \approx 2 \sqrt{\log N} independently of \sigma^2 in case I. In contrast, in case II, the amplitude approaches to an N-independent constant for large N, \alpha_N \approx 4/\sqrt{\pi}, independently of 0

Suggested Citation

  • Gregor Wergen & Satya N. Majumdar & Gregory Schehr, 2012. "Record Statistics for Multiple Random Walks," Post-Print hal-00757701, HAL.
  • Handle: RePEc:hal:journl:hal-00757701
    DOI: 10.1103/PhysRevE.86.011119
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wergen, Gregor, 2014. "Modeling record-breaking stock prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 114-133.
    2. Claude Godreche & Satya N. Majumdar & Gregory Schehr, 2015. "Record statistics for random walk bridges," Papers 1505.06053, arXiv.org, revised Jan 2016.
    3. Claude Godreche & Satya N. Majumdar & Gregory Schehr, 2017. "Record statistics of a strongly correlated time series: random walks and L\'evy flights," Papers 1702.00586, arXiv.org.
    4. Gregory Schehr & Satya N. Majumdar, 2013. "Exact record and order statistics of random walks via first-passage ideas," Papers 1305.0639, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00757701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.