IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00540202.html
   My bibliography  Save this paper

On S-convexity and risk aversion

Author

Listed:
  • Marco Scarsini

    (GREGH - Groupement de Recherche et d'Etudes en Gestion à HEC - HEC Paris - Ecole des Hautes Etudes Commerciales - CNRS - Centre National de la Recherche Scientifique, Dipartimento di Scienze Economiche e Aziendali - LUISS - Libera Università Internazionale degli Studi Sociali Guido Carli [Roma])

  • Michel Denuit
  • Claude Lefevre

Abstract

The present note first discusses the concept of s-convex pain functions in decision theory. Then, the economic behavior of an agent with such a pain function is represented through the comparison of some recursive lotteries.

Suggested Citation

  • Marco Scarsini & Michel Denuit & Claude Lefevre, 2001. "On S-convexity and risk aversion," Post-Print hal-00540202, HAL.
  • Handle: RePEc:hal:journl:hal-00540202
    DOI: 10.1023/A:1010336203373
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kaas, R. & Hesselager, O., 1995. "Ordering claim size distributions and mixed Poisson probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 193-201, October.
    2. Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michel Denuit & Louis Eeckhoudt, 2010. "Bivariate Stochastic Dominance and Substitute Risk-(In)dependent Utilities," Decision Analysis, INFORMS, vol. 7(3), pages 302-312, September.
    2. Marta_Cardin & Paola_Ferretti, 2004. "Some theory of bivariate risk attitude," Game Theory and Information 0411009, University Library of Munich, Germany.
    3. Christophe Courbage & Béatrice Rey, 2020. "On temperance and risk spreading," Theory and Decision, Springer, vol. 88(4), pages 527-539, May.
    4. Denuit, Michel & Liu, Liqun, 2013. "Decreasing higher-order absolute risk aversion and higher-degree stochastic dominance," LIDAM Discussion Papers ISBA 2013007, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Denuit, Michel M. & Eeckhoudt, Louis, 2010. "Stronger measures of higher-order risk attitudes," Journal of Economic Theory, Elsevier, vol. 145(5), pages 2027-2036, September.
    6. Michel Denuit & Liqun Liu, 2014. "Decreasing higher-order absolute risk aversion and higher-degree stochastic dominance," Theory and Decision, Springer, vol. 76(2), pages 287-295, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michel Denuit & Claude Lefèvre & Moshe Shaked, 2000. "Stochastic Convexity of the Poisson Mixture Model," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 231-254, September.
    2. Nocetti, Diego C., 2013. "The LeChatelier principle for changes in risk," Journal of Mathematical Economics, Elsevier, vol. 49(6), pages 460-466.
    3. Denuit, Michel & Vylder, Etienne De & Lefevre, Claude, 1999. "Extremal generators and extremal distributions for the continuous s-convex stochastic orderings," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 201-217, May.
    4. Denuit, Michel & Rey, Béatrice, 2013. "Another look at risk apportionment," Journal of Mathematical Economics, Elsevier, vol. 49(4), pages 335-343.
    5. Michel Denuit & Louis Eeckhoudt & Béatrice Rey, 2010. "Some consequences of correlation aversion in decision science," Annals of Operations Research, Springer, vol. 176(1), pages 259-269, April.
    6. Mario Menegatti & Richard Peter, 2022. "Changes in Risky Benefits and in Risky Costs: A Question of the Right Order," Management Science, INFORMS, vol. 68(5), pages 3625-3634, May.
    7. Trinh, Giang & Wright, Malcolm J., 2022. "Predicting future consumer purchases in grocery retailing with the condensed Poisson lognormal model," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    8. Christoph Heinzel, 2014. "Term structure of discount rates under multivariate s-ordered consumption growth," Working Papers SMART 14-01, INRAE UMR SMART.
    9. Michel Denuit & Louis Eeckhoudt, 2010. "Bivariate Stochastic Dominance and Substitute Risk-(In)dependent Utilities," Decision Analysis, INFORMS, vol. 7(3), pages 302-312, September.
    10. Heinzel Christoph & Richard Peter, 2021. "Precautionary motives with multiple instruments," Working Papers SMART 21-09, INRAE UMR SMART.
    11. Denuit, Michel & Vermandele, Catherine, 1998. "Optimal reinsurance and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 229-233, July.
    12. Denuit, Michel M. & Eeckhoudt, Louis, 2010. "Stronger measures of higher-order risk attitudes," Journal of Economic Theory, Elsevier, vol. 145(5), pages 2027-2036, September.
    13. Michel Denuit & Rachel Huang & Larry Tzeng, 2015. "Almost expectation and excess dependence notions," Theory and Decision, Springer, vol. 79(3), pages 375-401, November.
    14. Michel Denuit & Louis Eeckhoudt & Mario Menegatti, 2011. "Correlated risks, bivariate utility and optimal choices," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(1), pages 39-54, January.
    15. Claude Lefèvre & Stéphane Loisel, 2013. "On multiply monotone distributions, continuous or discrete, with applications," Post-Print hal-00750562, HAL.
    16. Elyès Jouini & Clotilde Napp & Diego Nocetti, 2013. "Economic consequences of Nth-degree risk increases and Nth-degree risk attitudes," Journal of Risk and Uncertainty, Springer, vol. 47(2), pages 199-224, October.
    17. Denuit, Michel & Lefevre, Claude & Utev, Sergey, 2002. "Measuring the impact of dependence between claims occurrences," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 1-19, February.
    18. repec:hal:wpaper:hal-00750562 is not listed on IDEAS
    19. Denuit, Michel & Liu, Liqun & Meyer, Jack, 2014. "A separation theorem for the weak s-convex orders," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 279-284.
    20. Lefèvre, Claude & Loisel, Stéphane, 2010. "Stationary-excess operator and convex stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 64-75, August.
    21. Manel Kacem & Claude Lefèvre & Stéphane Loisel, 2013. "Convex extrema for nonincreasing discrete distributions: effects of convexity constraints," Working Papers hal-00912942, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00540202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.