IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00308977.html
   My bibliography  Save this paper

Understanding and reducing variability of SOM neighbourhood structure

Author

Listed:
  • Patrick Rousset

    (CEREQ - Centre d'études et de recherches sur les qualifications - ministère de l'Emploi, cohésion sociale et logement - M.E.N.E.S.R. - Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche)

  • Christiane Guinot
  • Bertrand Maillet

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

The self-organizing map (SOM) is a nonlinear unsupervised method for vector quantization. In the context of classification and data analysis, the SOM technique highlights the neighbourhood structure between clusters. The correspondence between this clustering and the input proximity is called the topology preservation. We present here a stochastic method based on bootstrapping in order to increase the reliability of the induced neighbourhood structure. Considering the property of topology preservation, a local approach of variability (at an individual level) is preferred to a global one. The resulting (robust) map, called R-map, is more stable relatively to the choice of the sampling method and to the learning options of the SOM algorithm (initialization and order of data presentation). The method consists of selecting one map from a group of several solutions resulting from the same self-organizing map algorithm, but obtained with various inputs. The R-map can be thought of as the map, among the group of solutions, corresponding to the most common interpretation of the data set structure. The R-map is then the representative of a given SOM network, and the R-map ability to adjust the data structure indicates the relevance of the chosen network.

Suggested Citation

  • Patrick Rousset & Christiane Guinot & Bertrand Maillet, 2006. "Understanding and reducing variability of SOM neighbourhood structure," Post-Print hal-00308977, HAL.
  • Handle: RePEc:hal:journl:hal-00308977
    DOI: 10.1016/j.neunet.2006.05.017
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00308977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.