IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00639685.html
   My bibliography  Save this paper

Coalition structures induced by the strength of a graph

Author

Listed:
  • Michel Grabisch

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Alexandre Skoda

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study cooperative games associated with a communication structure which takes into account a level of communication between players. Let us consider an undirected communication graph : each node represents a player and there is an edge between two nodes if the corresponding players can communicate directly. Moreover we suppose that a weight is associated with each edge. We compute the so-called strength of this graph and use the corresponding partition to determine a particular coalition structure. The strength of a graph is a measure introduced in graph theory to evaluate the resistance of networks under attacks. It corresponds to the minimum on all subsets of edges of the ratio between the sum of the weights of the edges and the number of connected components created when the set of edges is suppressed from the graph. The set of edges corresponding to the minimum ratio induces a partition of the graph. We can iterate the calculation of the strength on the subgraphs of the partition to obtain refined partitions which we use to define a hierarchy of coalition structures. For a given game on the graph, we build new games induced by these coalition structures and study the inheritance of convexity properties, and the Shapley value associated with them.

Suggested Citation

  • Michel Grabisch & Alexandre Skoda, 2011. "Coalition structures induced by the strength of a graph," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00639685, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00639685
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00639685
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00639685/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    2. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    3. van den Nouweland, Anne & Borm, Peter, 1991. "On the Convexity of Communication Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 19(4), pages 421-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Skoda, 2019. "Convexity of graph-restricted games induced by minimum partitions," Post-Print halshs-01617023, HAL.
    2. M. Grabisch & A. Skoda, 2012. "Games induced by the partitioning of a graph," Annals of Operations Research, Springer, vol. 201(1), pages 229-249, December.
    3. Alexandre Skoda, 2017. "Inheritance of Convexity for the P min-Restricted Game," Post-Print halshs-01660670, HAL.
    4. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    5. Alexandre Skoda, 2017. "Inheritance of Convexity for the Pmin-Restricted Game," Documents de travail du Centre d'Economie de la Sorbonne 17051, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Alexandre Skoda, 2016. "Inheritance of Convexity for Partition Restricted Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318105, HAL.
    7. Alexandre Skoda, 2019. "Convexity of graph-restricted games induced by minimum partitions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01617023, HAL.
    8. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Post-Print halshs-02967120, HAL.
    9. Alexandre Skoda, 2016. "Inheritance of Convexity for Partition Restricted," Documents de travail du Centre d'Economie de la Sorbonne 16040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Alexandre Skoda, 2016. "Inheritance of Convexity for Partition Restricted Games," Post-Print halshs-01318105, HAL.
    11. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02967120, HAL.
    12. Alexandre Skoda, 2017. "Inheritance of Convexity for the P min-Restricted Game," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01660670, HAL.
    13. Alexandre Skoda, 2017. "Convexity of Graph-Restricted Games Induced by Minimum Partitions," Post-Print halshs-01659804, HAL.
    14. Alexandre Skoda, 2017. "Convexity of Graph-Restricted Games Induced by Minimum Partitions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01659804, HAL.
    15. A. Skoda, 2021. "Inheritance of convexity for the $$\mathcal {P}_{\min }$$ P min -restricted game," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 1-32, February.
    16. Alexandre Skoda, 2020. "Inheritance of Convexity for the P˜min-Restricted Game," Documents de travail du Centre d'Economie de la Sorbonne 20020, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Alexandre Skoda, 2017. "Convexity of Graph-Restricted Games Induced by Minimum Partitions," Documents de travail du Centre d'Economie de la Sorbonne 17049, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    18. Alexandre Skoda, 2016. "Convexity of Network Restricted Games Induced by Minimum Partitions," Documents de travail du Centre d'Economie de la Sorbonne 16019, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    20. E. Algaba & J.M. Bilbao & J.J. López, 2001. "A unified approach to restricted games," Theory and Decision, Springer, vol. 50(4), pages 333-345, June.

    More about this item

    Keywords

    Communication networks; coalition structure; cooperative game.; Réseaux de communications; structures de coalition; jeux coopératifs.;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00639685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.