IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-03264893.html
   My bibliography  Save this paper

Integral Operator Riccati Equations Arising in Stochastic Volterra Control Problems

Author

Listed:
  • Eduardo Abi Jaber

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 UFR27 - Université Paris 1 Panthéon-Sorbonne - UFR Mathématiques & Informatique - UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Enzo Miller

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

  • Huyen Pham

    (LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique - UPCité - Université Paris Cité)

Abstract

We establish existence and uniqueness for infinite-dimensional Riccati equations taking values in the Banach space $L^1(\mu \otimes \mu)$ for certain signed matrix measures $\mu$ which are not necessarily finite. Such equations can be seen as the infinite-dimensional analogue of matrix Riccati equations, and they appear in the linear-quadratic control theory of stochastic Volterra equations.

Suggested Citation

  • Eduardo Abi Jaber & Enzo Miller & Huyen Pham, 2021. "Integral Operator Riccati Equations Arising in Stochastic Volterra Control Problems," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03264893, HAL.
  • Handle: RePEc:hal:cesptp:hal-03264893
    DOI: 10.1137/19M1298287
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Working Papers hal-03835948, HAL.
    2. Eduardo Abi Jaber, 2022. "The Laplace transform of the integrated Volterra Wishart process," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 309-348, January.
    3. Eduardo Abi Jaber & Eyal Neuman, 2022. "Optimal Liquidation with Signals: the General Propagator Case," Papers 2211.00447, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-03264893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.