IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/hal-00310499.html
   My bibliography  Save this paper

Nash implementation with an infinite-dimensional trade space

Author

Listed:
  • Guillaume Bernis

    (Calyon, Capital Markets - GCE - Calyon, Capital Markets - GCE)

  • Gaël Giraud

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper deals with the problem of implementing the Walras correspondence via Nash equilibria, in exchange economies with infinitely many commodities and finitely many households with possibly non-ordered preferences. We explicitly construct a feasible mechanism enjoying some features, which have natural economic meanings. Under a fairly weak boundary condition, this game fully implements the Walras equilibria. If this condition is not fulfilled, our mechanism nevertheless implements the constrained Walras equilibria.

Suggested Citation

  • Guillaume Bernis & Gaël Giraud, 2005. "Nash implementation with an infinite-dimensional trade space," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00310499, HAL.
  • Handle: RePEc:hal:cesptp:hal-00310499
    DOI: 10.1007/s10058-005-0130-1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:hal-00310499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.