IDEAS home Printed from https://ideas.repec.org/p/hae/wpaper/2016-6.html
   My bibliography  Save this paper

Sustainable Agriculture Irrigation Management: The Water-Energy-Food Nexus in Pajaro Valley, California

Author

Listed:
  • Christopher Wada

    (University of Hawaii Economic Research Organization, University of Hawaii at Manoa)

  • Kimberly Burnett

    (University of Hawaii Economic Research Organization, University of Hawaii at Manoa)

  • Jason Gurdak

    (San Francisco State University)

Abstract

The water-energy-food (WEF) nexus is quickly becoming one of the most critical global environmental challenges of the twenty first century. However, WEF systems are inherently complex; they typically are dynamic and span multiple land or agro-ecosystems at a regional or global scale. Addressing this challenge requires a systems approach to optimal and sustainable resource management across multiple dimensions. To that end, using Pajaro Valley (California) as a case study, our research aims to (1) highlight synergies and tradeoffs in food and water production, (2) build a dynamic framework capable of examining intertemporal resource relationships, and (3) detail the steps required to develop incentive-compatible financing of the resulting management plans when benefits are not distributed uniformly across users. Using a stylized model, we find that in the long run, inland growers benefit from the halting of seawater intrusion (SWI) due to overpumping of groundwater. We also calculate that the water provided by the proposed College Lake Multi-Objective Management Program—a plan designed to halt SWI and support sustainable water and agricultural development in the region—will generate net revenue of $40-58 million per year, compared to an annualized cost of less than $3 million. An equal cost-sharing plan would be desirable if the benefit of the project exceeded $1,268 per year for each well owner. Since this may not necessarily be the case for smaller well owners, one possible alternative is to allocate costs in proportion to expected benefits for each user.

Suggested Citation

  • Christopher Wada & Kimberly Burnett & Jason Gurdak, 2016. "Sustainable Agriculture Irrigation Management: The Water-Energy-Food Nexus in Pajaro Valley, California," Working Papers 2016-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  • Handle: RePEc:hae:wpaper:2016-6
    as

    Download full text from publisher

    File URL: https://uhero.hawaii.edu/wp-content/uploads/2019/08/WP_2016-6.pdf
    File Function: First version, 2016
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Unknown, 2016. "Water Energy and Food Security Nexus," Conference Proceedings 253272, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    2. James A. Roumasset & Christopher A. Wada, 2010. "Optimal and Sustainable Groundwater Extraction," Sustainability, MDPI, vol. 2(8), pages 1-10, August.
    3. Golam Rasul & Bikash Sharma, 2016. "The nexus approach to water–energy–food security: an option for adaptation to climate change," Climate Policy, Taylor & Francis Journals, vol. 16(6), pages 682-702, August.
    4. Tony Allan & Martin Keulertz & Eckart Woertz, 2015. "The water-food-energy nexus: an introduction to nexus concepts and some conceptual and operational problems," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 31(3), pages 301-311, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colby, Bonnie, 2020. "Acquiring environmental flows: ecological economics of policy development in western U.S," Ecological Economics, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cholho Song & Sea Jin Kim & Jooyeon Moon & Soo Jeong Lee & Wona Lee & Nahui Kim & Sonam Wangyel Wang & Woo-Kyun Lee, 2017. "Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude," Sustainability, MDPI, vol. 9(8), pages 1-16, August.
    2. Ahmad Hamidov & Katharina Helming, 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture," Sustainability, MDPI, vol. 12(15), pages 1-20, August.
    3. Joel O. Botai & Christina M. Botai & Katlego P. Ncongwane & Sylvester Mpandeli & Luxon Nhamo & Muthoni Masinde & Abiodun M. Adeola & Michael G. Mengistu & Henerica Tazvinga & Miriam D. Murambadoro & S, 2021. "A Review of the Water–Energy–Food Nexus Research in Africa," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
    4. Cinthia Soto Golcher & Ingrid J Visseren-Hamakers, 2018. "Framing and integration in the global forest, agriculture and climate change nexus," Environment and Planning C, , vol. 36(8), pages 1415-1436, December.
    5. Chrysaida-Aliki Papadopoulou & Maria P. Papadopoulou & Chrysi Laspidou & Stefania Munaretto & Floor Brouwer, 2020. "Towards a Low-Carbon Economy: A Nexus-Oriented Policy Coherence Analysis in Greece," Sustainability, MDPI, vol. 12(1), pages 1-22, January.
    6. Kennedy Muthee & Lalisa Duguma & Judith Nzyoka & Peter Minang, 2021. "Ecosystem-Based Adaptation Practices as a Nature-Based Solution to Promote Water-Energy-Food Nexus Balance," Sustainability, MDPI, vol. 13(3), pages 1-17, January.
    7. Massimo Peri & Daniela Vandone & Lucia Baldi, 2017. "Volatility Spillover between Water, Energy and Food," Sustainability, MDPI, vol. 9(6), pages 1-16, June.
    8. Zhang, Tong & Tan, Qian & Yu, Xiaoning & Zhang, Shan, 2020. "Synergy assessment and optimization for water-energy-food nexus: Modeling and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    9. Adenike K. Opejin & Rimjhim M. Aggarwal & Dave D. White & J. Leah Jones & Ross Maciejewski & Giuseppe Mascaro & Hessam S. Sarjoughian, 2020. "A Bibliometric Analysis of Food-Energy-Water Nexus Literature," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    10. Dave D. White & J. Leah Jones & Ross Maciejewski & Rimjhim Aggarwal & Giuseppe Mascaro, 2017. "Stakeholder Analysis for the Food-Energy-Water Nexus in Phoenix, Arizona: Implications for Nexus Governance," Sustainability, MDPI, vol. 9(12), pages 1-21, November.
    11. Jeremiah Ejemeyovwi & Queen Adiat & Edikan Ekong, 2019. "Energy Usage, Internet Usage and Human Development in Selected Western African Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(5), pages 316-321.
    12. J David Tàbara & Takeshi Takama & Manisha Mishra & Lauren Hermanus & Sean Khaya Andrew & Pacia Diaz & Gina Ziervogel & Louis Lemkow, 2020. "Micro-solutions to global problems: understanding social processes to eradicate energy poverty and build climate-resilient livelihoods," Climatic Change, Springer, vol. 160(4), pages 711-725, June.
    13. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
    14. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    15. Govindan, Rajesh & Al-Ansari, Tareq, 2019. "Computational decision framework for enhancing resilience of the energy, water and food nexus in risky environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 653-668.
    16. Ribas, Aline & Lucena, André F.P. & Schaeffer, Roberto, 2017. "Bridging the energy divide and securing higher collective well-being in a climate-constrained world," Energy Policy, Elsevier, vol. 108(C), pages 435-450.
    17. Bazzana, Davide & Foltz, Jeremy & Zhang, Ying, 2022. "Impact of climate smart agriculture on food security: An agent-based analysis," Food Policy, Elsevier, vol. 111(C).
    18. Nazmul Huq & Antje Bruns & Lars Ribbe & Saleemul Huq, 2017. "Mainstreaming Ecosystem Services Based Climate Change Adaptation (EbA) in Bangladesh: Status, Challenges and Opportunities," Sustainability, MDPI, vol. 9(6), pages 1-20, June.
    19. Ye-Shuang Xu & Shui-Long Shen & Dong-Jie Ren & Huai-Na Wu, 2016. "Analysis of Factors in Land Subsidence in Shanghai: A View Based on a Strategic Environmental Assessment," Sustainability, MDPI, vol. 8(6), pages 1-12, June.
    20. Wegerich, Kai & Van Rooijen, Daniel & Soliev, Ilkhom & Mukhamedova, Nozilakhon, 2015. "Water Security in the Syr Darya Basin," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 7(9), pages 4657-4684.

    More about this item

    Keywords

    water-energy-food nexus; sustainable agriculture; groundwater management; saltwater intrusion; cost-benefit analysis; Pajaro Valley;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hae:wpaper:2016-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: UHERO (email available below). General contact details of provider: https://edirc.repec.org/data/heuhius.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.