IDEAS home Printed from https://ideas.repec.org/p/gua/wpaper/ec200505.html
   My bibliography  Save this paper

On the Existence of Efficient Hedge for an American Contingent Claim: Discrete Time Market

Author

Listed:
  • Leonel Pérez-Hernández

    (Department of Economics and Finance, Universidad de Guanajuato)

Abstract

We show the existence of efficient hedge strategies for an investor facing the problem of a lack of initial capital for implementing a (super-) hedging strategy for an american contingent claim in a general incomplete market. For the optimization we consider once the maximization of the expected success ratio of the worst possible case as well as the minimization of the shortfall risk. These problems lead to stochastic games which do not need to have a value. We provide an example for this in a CRR model for an american put. Alternatively we might fix a minimal expected success ratio or a boundary for the shortfall risk and look for the minimal amount of initial capital for which there is a self-financing strategy fulfilling one or the other restriction. For all these problems we show the optimal strategy consists in hedging a modified american claim for some ``randomized test process''.

Suggested Citation

  • Leonel Pérez-Hernández, 2005. "On the Existence of Efficient Hedge for an American Contingent Claim: Discrete Time Market," Department of Economics and Finance Working Papers EC200505, Universidad de Guanajuato, Department of Economics and Finance.
  • Handle: RePEc:gua:wpaper:ec200505
    as

    Download full text from publisher

    File URL: http://economia.ugto.org/WorkingPapers/EC200505.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Karatzas & Jaksa Cvitanic, 1999. "On dynamic measures of risk," Finance and Stochastics, Springer, vol. 3(4), pages 451-482.
    2. Ernst Eberlein & Jean Jacod, 1997. "On the range of options prices (*)," Finance and Stochastics, Springer, vol. 1(2), pages 131-140.
    3. Jakša Cvitanić, 1999. "Methods of Partial Hedging," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 6(1), pages 7-35, January.
    4. N. Bellamy & M. Jeanblanc, 2000. "Incompleteness of markets driven by a mixed diffusion," Finance and Stochastics, Springer, vol. 4(2), pages 209-222.
    5. Paolo Guasoni, 2002. "Risk minimization under transaction costs," Finance and Stochastics, Springer, vol. 6(1), pages 91-113.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Yumiharu Nakano, 2003. "Minimizing coherent risk measures of shortfall in discrete-time models with cone constraints," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(2), pages 163-181.
    8. Marco Schulmerich & Siegfried Trautmann, 2003. "Local Expected Shortfall-Hedging in Discrete Time," Review of Finance, European Finance Association, vol. 7(1), pages 75-102.
    9. Hans FÃllmer & Peter Leukert, 1999. "Quantile hedging," Finance and Stochastics, Springer, vol. 3(3), pages 251-273.
    10. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonel Perez-hernandez, 2007. "On the existence of an efficient hedge for an American contingent claim within a discrete time market," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 547-551.
    2. Pascal François & Geneviève Gauthier & Frédéric Godin, 2012. "Optimal Hedging when the Underlying Asset Follows a Regime-switching Markov Process," Cahiers de recherche 1234, CIRPEE.
    3. Sabrina Mulinacci, 2011. "The efficient hedging problem for American options," Finance and Stochastics, Springer, vol. 15(2), pages 365-397, June.
    4. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    5. Mercurio, Fabio, 2001. "Claim pricing and hedging under market incompleteness and "mean-variance" preferences," European Journal of Operational Research, Elsevier, vol. 133(3), pages 635-652, September.
    6. Wang, Yumin, 2009. "Quantile hedging for guaranteed minimum death benefits," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 449-458, December.
    7. repec:dau:papers:123456789/5374 is not listed on IDEAS
    8. Coleman, Thomas F. & Levchenkov, Dmitriy & Li, Yuying, 2007. "Discrete hedging of American-type options using local risk minimization," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3398-3419, November.
    9. Monoyios, Michael, 2004. "Option pricing with transaction costs using a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 889-913, February.
    10. Balder, Sven & Brandl, Michael & Mahayni, Antje, 2009. "Effectiveness of CPPI strategies under discrete-time trading," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 204-220, January.
    11. Jean-Luc Prigent, 2001. "Option Pricing with a General Marked Point Process," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 50-66, February.
    12. Branger, Nicole & Mahayni, Antje, 2006. "Tractable hedging: An implementation of robust hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 30(11), pages 1937-1962, November.
    13. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    14. François, Pascal & Gauthier, Geneviève & Godin, Frédéric, 2014. "Optimal hedging when the underlying asset follows a regime-switching Markov process," European Journal of Operational Research, Elsevier, vol. 237(1), pages 312-322.
    15. Bladt, Mogens & Rydberg, Tina Hviid, 1998. "An actuarial approach to option pricing under the physical measure and without market assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 65-73, May.
    16. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    17. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    18. Peter Lindberg, 2012. "Optimal partial hedging of an American option: shifting the focus to the expiration date," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 75(3), pages 221-243, June.
    19. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    20. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    21. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.

    More about this item

    Keywords

    Partial Hedging; Efficient Hedging; Expected Loss; American Claims; Incomplete Markets; Dynamic Measures of Risk.;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • G19 - Financial Economics - - General Financial Markets - - - Other

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gua:wpaper:ec200505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luis Sanchez Mier (email available below). General contact details of provider: https://edirc.repec.org/data/eeugtmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.